[1] 徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 177-189 XU Hao, LI Huaqiang. Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power System Technology, 2020, 44(12): 177-189 [2] 宋崇明, 田雪沁, 徐彤, 等. 配置蓄热装置对火电机组一次调频性能影响[J]. 中国电力, 2020, 52(2): 120-128 SONG Chongming, TIAN Xueqin, XU Tong, et al. Effect of heat storage device on primary frequency regulation capacity of thermal power unit[J]. Electric Power, 2020, 52(2): 120-128 [3] 电力发展十三五规划(2016—2020年)[EB/OL]. (2016-12-12) [2021-01-08]. http://www.gov.cn/xinwen/2016-12/22/5151549/files/696e98c57ecd49c289968ae2d77ed583.pdf. [4] 杨建华, 王雄飞, 肖达强, 等. 促进新能源消纳的交易机制及效益研究[J]. 中国电力, 2020, 53(4): 89-95 YANG Jianhua, WANG Xiongfei, XIAO Daqiang, et al. Research on the transaction mechanism and benefit of promoting new energy consumption[J]. Electric Power, 2020, 53(4): 89-95 [5] 国家能源局综合司关于下达火电灵活性改造试点项目的通知. [EB/OL]. (2016-6-28) [2021-01-08]. http://zfxxgk.nea.gov.cn/auto84/201607/t20160704_2272.htm. [6] 国家能源局综合司关于下达第二批火电灵活性改造试点项目的通知. [EB/OL]. (2016-7-28) [2021-01-08]. http://zfxxgk.nea.gov.cn/auto84/201608/t20160805_2285.htm. [7] 国家发展改革委国家能源局关于印发《解决弃水弃风弃光问题实施方案》的通知. [EB/OL]. (2017-11-08) [2021-01-08]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3056.htm. [8] 国家发展改革委国家能源局关于提升电力系统调节能力的指导意见. [EB/OL]. (2018-2-28) [2021-01-08]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201803/t20180323_962694.html. [9] 关于印发《东北电力辅助服务市场运营规则》的通知. [EB/OL]. (2020-12-23) [2021-01-08]. http://dbj.nea.gov.cn/zwfw/zcfg/202012/t20201223_4055300.html. [10] 甘肃能源监管办关于印发《甘肃省电力辅助服务市场运营规则(暂行)》的通知. [EB/OL]. (2019-9-20) [2021-01-08]. http://gsb.nea.gov.cn/view.asp?id=4249. [11] 西北能源监管局启动宁夏电力辅助服务市场运营规则修订工作. [EB/OL]. (2020-9-27) [2021-01-08]. http://www.nea.gov.cn/2020-09/27/c_139400345.htm. [12] 华中能源监管局关于印发《湖北电力调峰辅助服务市场运营规则(试行)》的通知. [EB/OL]. (2020-06-09) [2021-01-08]. http://hzj.nea.gov.cn/adminContent/initViewContent.do?pk=A79DB333C198B1E6E050A8C0C0C822D3. [13] 牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5): 1-7 MU Chunhua, JU Wenping, HUANG Jiasi, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7 [14] 戈志华, 孙诗梦, 万燕, 等. 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37(11): 3216-3222 GE Zhihua, SUN Shimeng, WAN Yan, et al. Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE, 2017, 37(11): 3216-3222 [15] 周国强, 赵树龙. 汽轮机高、低压旁路联合供热应用研究[J]. 东北电力技术, 2019, 40(11): 1-4 ZHOU Guoqiang, ZHAO Shulong. Application of HP-LP bypass system combining with heating technology[J]. Northeast Electric Power Technology, 2019, 40(11): 1-4 [16] 刘立华, 魏湘, 杨铁峰, 等. 超临界600 MW直接空冷机组双背压供热改造技术[J]. 热力发电, 2018, 47(12): 87-92 LIU Lihua, WEI Xiang, YANG Tiefeng, et al. Double-backpressure heating flexible reformation technology for a supercritical 600 MW direct air cooling unit[J]. Thermal Power Generation, 2018, 47(12): 87-92 [17] 张猛, 刘鑫屏. 350 MW供热机组低压缸切除改造灵活性提升分析[J]. 华北电力大学学报(自然科学版), 2019, 46(3): 73-79 ZHANG Meng, LIU Xinping. Flexibility improvement in heating units through low-pressure cylinder excision of 350 MW heating unit[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(3): 73-79 [18] 戈志华, 张倩, 熊念, 等. 330 MW供热机组低压缸近零出力热力性能分析[J]. 化工进展, 2020, 39(9): 3650-3657 GE Zhihua, ZHANG Qian, XIONG Nian, et al. Thermal performance analysis of 330 MW heating unit with low pressure cylinder near zero output[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3650-3657 [19] 鄂志君, 张利, 杨帮宇, 等. 低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J]. 汽轮机技术, 2019, 61(5): 383-386, 391 E Zhijun, ZHANG Li, YANG Bangyu, et al. Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J]. Turbine Technology, 2019, 61(5): 383-386, 391 [20] 梁天赋, 谢尉扬, 王飞, 等. 汽轮机低压缸切缸运行关键技术研究[J]. 汽轮机技术, 2019, 61(6): 471-472 LIANG Tianfu, XIE Weiyang, WANG Fei, et al. The key technique research of removing the low pressure cylinder of steam turbine[J]. Turbine Technology, 2019, 61(6): 471-472 [21] 王建勋. 运行背压变化对低压缸零出力技术安全性及经济性的影响分析[J]. 化工进展, 2020, 39(增刊1): 85-89 WANG Jianxun. Analysis on influence of variation of operating back pressure on safety and economy of zero output technology of low-pressure cylinder[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 85-89 [22] 天罡, 刘立华, 黄智, 等. 350 MW机组低压缸切除供热改造方案及调峰性能分析[J]. 汽轮机技术, 2019, 61(6): 457-460 TIAN Gang, LIU Lihua, HUANG Zhi, et al. Reconstruction scheme of removing low pressure cylinder and heating for 350 MW unit analysis of peak regulation performance[J]. Turbine Technology, 2019, 61(6): 457-460 [23] 谢天, 孙永春, 付青山, 等. 200 MW机组热电解耦方案研究[J]. 节能技术, 2018, 36(6): 566-569 XIE Tian, SUN Yongchun, FU Qingshan, et al. Study on thermo-electricity decoupling scheme for 200 MW unit[J]. Energy Conservation Technology, 2018, 36(6): 566-569 |