中国电力 ›› 2024, Vol. 57 ›› Issue (1): 209-218.DOI: 10.11930/j.issn.1004-9649.202306024
• 面向碳达峰碳中和目标的清洁高效发电技术 • 上一篇 下一篇
收稿日期:
2023-06-07
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
梁健(1984—),男,硕士,高级工程师,从事新型能源系统研究,E-mail:39260234@qq.com基金资助:
Jian LIANG1(), Meng WANG2, Yaxin YANG1, Yang HU3, Erren YAO3(
)
Received:
2023-06-07
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
为提升压缩空气储能技术的能量利用率与供能灵活性,基于能量梯级利用原理,提出了一种耦合压缩空气储能与增强型地热技术的冷热电联产系统。通过建立系统的热力学模型,研究了关键运行参数对系统热力学性能的影响规律,并以系统㶲效率和单位能量成本为目标函数,获得了系统的多目标优化解集。结果表明,膨胀机与换热器是系统高效运行的关键设备,提升这2个设备的运行效率对于系统热力学性能以及输出功量的提升作用显著,采用多目标优化方法得到系统的最优㶲效率为55.73%,最优单位能量成本为6378.94 元/kW,能量效率和相对节能率较设计工况分别提升了6.1%和10.68%。研究结果从热力学和经济学角度为系统的工程应用提供了理论依据。
梁健, 王蒙, 杨亚欣, 胡杨, 姚尔人. 基于压缩空气储能与增强型地热的三联产系统热力学分析[J]. 中国电力, 2024, 57(1): 209-218.
Jian LIANG, Meng WANG, Yaxin YANG, Yang HU, Erren YAO. Thermodynamic Analysis of CCHP with Compressed Air Energy Storage and Enhanced Geothermal Technology[J]. Electric Power, 2024, 57(1): 209-218.
图 1 增强型地热系统与压缩空气储能技术耦合的冷热电联产系统
Fig.1 The system of the combined cooling, heating and power system based on compressed air energy storage and enhanced geothermal technology
设备 | 耗费㶲 | 收益㶲 | 㶲损失 | |||
压缩机1 | ||||||
换热器1 | ||||||
压缩机2 | ||||||
换热器2 | ||||||
膨胀机1 | ||||||
换热器3 | ||||||
膨胀机2 | ||||||
换热器4 | ||||||
泵 | ||||||
储气室 |
表 1 系统中各设备㶲平衡方程
Table 1 Exergy balance for each component of the system
设备 | 耗费㶲 | 收益㶲 | 㶲损失 | |||
压缩机1 | ||||||
换热器1 | ||||||
压缩机2 | ||||||
换热器2 | ||||||
膨胀机1 | ||||||
换热器3 | ||||||
膨胀机2 | ||||||
换热器4 | ||||||
泵 | ||||||
储气室 |
设备 | 投资成本方程 | |
压缩机 | ||
换热器 | ||
膨胀机 | ||
泵 | ||
储气室 |
表 2 系统中各设备投资成本方程
Table 2 Purchased equipment cost for each component of the system
设备 | 投资成本方程 | |
压缩机 | ||
换热器 | ||
膨胀机 | ||
泵 | ||
储气室 |
设备 | 文献值/kW | 计算值/kW | 相对误差/% | |||
压缩机 | 274.50[ | 277.60 | 1.13 | |||
膨胀机 | 219.10[ | 221.20 | 0.96 | |||
换热器 | 533.40[ | 537.40 | 0.75 | |||
泵 | 180.00[ | 182.00 | 1.11 |
表 3 系统中关键设备模型验证
Table 3 Model validation for each component of the system
设备 | 文献值/kW | 计算值/kW | 相对误差/% | |||
压缩机 | 274.50[ | 277.60 | 1.13 | |||
膨胀机 | 219.10[ | 221.20 | 0.96 | |||
换热器 | 533.40[ | 537.40 | 0.75 | |||
泵 | 180.00[ | 182.00 | 1.11 |
参数 | 数值 | |
环境压力 P0/Pa | 1013025 | |
环境温度 T0/℃ | 25 | |
储气装置压力范围 (Pac,min—Pac,max)/Pa | 2533125-60781500 | |
空气绝热系数 γ | 1.4 | |
储气温度 Tac/℃ | 25 | |
埋管换热器出口温度 T13/℃ | 120 | |
压缩机等熵效率 ηc/% | 80 | |
压缩机压比 εc | 40 | |
膨胀机等熵效率 ηt/% | 85 | |
膨胀机膨胀比 εt | 25 | |
冷却水温度 Tc/℃ | 25 | |
换热器节点温差 ΔThex/℃ | 5 |
表 4 系统的主要运行参数
Table 4 The input operating parameters of the system
参数 | 数值 | |
环境压力 P0/Pa | 1013025 | |
环境温度 T0/℃ | 25 | |
储气装置压力范围 (Pac,min—Pac,max)/Pa | 2533125-60781500 | |
空气绝热系数 γ | 1.4 | |
储气温度 Tac/℃ | 25 | |
埋管换热器出口温度 T13/℃ | 120 | |
压缩机等熵效率 ηc/% | 80 | |
压缩机压比 εc | 40 | |
膨胀机等熵效率 ηt/% | 85 | |
膨胀机膨胀比 εt | 25 | |
冷却水温度 Tc/℃ | 25 | |
换热器节点温差 ΔThex/℃ | 5 |
决策变量 | 下限 | 上限 | ||
压缩机压比 | 40 | 60 | ||
压缩机效率/% | 75 | 95 | ||
膨胀机进口温度/℃ | 105 | 135 | ||
膨胀机膨胀比 | 25 | 45 | ||
膨胀机效率/% | 75 | 95 | ||
换热器温差/℃ | 3 | 21 |
表 5 多目标优化决策变量范围
Table 5 The range of decision variables in the multi-objective optimization
决策变量 | 下限 | 上限 | ||
压缩机压比 | 40 | 60 | ||
压缩机效率/% | 75 | 95 | ||
膨胀机进口温度/℃ | 105 | 135 | ||
膨胀机膨胀比 | 25 | 45 | ||
膨胀机效率/% | 75 | 95 | ||
换热器温差/℃ | 3 | 21 |
决策变量 | 取值 | |
压缩机压比 | 57.47 | |
压缩机效率/% | 94.24 | |
膨胀机进口温度/℃ | 130.06 | |
膨胀机膨胀比 | 43.95 | |
膨胀机效率/% | 94.79 | |
换热器温差/℃ | 3.67 |
表 6 决策变量最优解
Table 6 Optimal solution of decision variable
决策变量 | 取值 | |
压缩机压比 | 57.47 | |
压缩机效率/% | 94.24 | |
膨胀机进口温度/℃ | 130.06 | |
膨胀机膨胀比 | 43.95 | |
膨胀机效率/% | 94.79 | |
换热器温差/℃ | 3.67 |
1 |
ALIRAHMI S M, RAZMI A R, ARABKOOHSAR A. Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems[J]. Renewable and Sustainable Energy Reviews, 2021, 142, 110850.
DOI |
2 |
BAZMI A A, ZAHEDI G. Sustainable energy systems: role of optimization modeling techniques in power generation and supply—a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (8): 3480- 3500.
DOI |
3 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11 (5): 1575- 1582. |
WANG Su, XIAO Liye, TANG Wenbing, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11 (5): 1575- 1582. | |
4 |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters - A review[J]. Journal of Energy Storage, 2021, 34, 102000.
DOI |
5 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
6 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
7 |
MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33, 532- 545.
DOI |
8 |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19 (3): 291- 312.
DOI |
9 |
YAO E R, WANG H R, WANG L G, et al. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion and Management, 2016, 118, 377- 386.
DOI |
10 |
黄恩和, 宋传教, 金庆辉, 等. 基于储热介质和排气温度的绝热式压缩空气储能系统优化设计[J]. 热力发电, 2021, 50 (8): 39- 46.
DOI |
HUANG Enhe, SONG Chuanjiao, JIN Qinghui, et al. Optimal design of adiabatic compressed air energy storage system based on heat storage medium and exhaust temperature[J]. Thermal Power Generation, 2021, 50 (8): 39- 46.
DOI |
|
11 | 文贤馗, 李翔, 邓彤天, 等. 先进压缩空气储能系统的余热回收和利用[J]. 中国电力, 2022, 55 (2): 28- 34. |
WEN Xiankui, LI Xiang, DENG Tongtian, et al. Waste heat recovery and utilization of advanced compressed air energy storage system[J]. Electric Power, 2022, 55 (2): 28- 34. | |
12 |
ZHANG Y, YAO E R, WANG T Y. Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods[J]. Journal of Energy Storage, 2021, 35, 102274.
DOI |
13 |
TONG Z M, CHENG Z W, TONG S G. A review on the development of compressed air energy storage in China: technical and economic challenges to commercialization[J]. Renewable and Sustainable Energy Reviews, 2021, 135, 110178.
DOI |
14 |
LI R X, WANG H R, ZHANG H R. Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable Energy, 2019, 138, 326- 339.
DOI |
15 |
QIN C, LOTH E. Liquid piston compression efficiency with droplet heat transfer[J]. Applied Energy, 2014, 114, 539- 550.
DOI |
16 |
BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 167, 112701.
DOI |
17 |
JIANG R H, CAI Z D, PENG K W, et al. Thermo-economic analysis and multi-objective optimization of polygeneration system based on advanced adiabatic compressed air energy storage system[J]. Energy Conversion and Management, 2021, 229, 113724.
DOI |
18 |
YAO E R, WANG H R, WANG L G, et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system[J]. Energy Conversion and Management, 2017, 138, 199- 209.
DOI |
19 |
LIU Y R, DING Y X, YANG M L, et al. A trigeneration application based on compressed air energy storage integrated with organic Rankine cycle and absorption refrigeration: multi-objective optimisation and energy, exergy and economic analysis[J]. Journal of Energy Storage, 2022, 55, 105803.
DOI |
20 |
LIU J L, WANG J H. Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor[J]. Energy, 2015, 91, 420- 429.
DOI |
21 |
HAN Z H, SUN Y, LI P. Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2020, 208, 112573.
DOI |
22 |
黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021, 50 (9): 1- 10.
DOI |
HUANG Huang, LIU Ran, LI Qian, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50 (9): 1- 10.
DOI |
|
23 |
MENG N, LI T L, JIA Y N, et al. Techno-economic performance comparison of enhanced geothermal system with typical cycle configurations for combined heating and power[J]. Energy Conversion and Management, 2020, 205, 112409.
DOI |
24 | 孔珑. 工程流体力学[M]. 4版. 北京: 中国电力出版社, 2014. |
25 |
WANG J L, WU J Y, ZHENG C Y. Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator[J]. Energy Conversion and Management, 2014, 86, 992- 1000.
DOI |
26 | 王卫良, 王玉召, 吕俊复, 等. 大型燃煤电站锅炉能效评价与节能分析[J]. 中国电力, 2020, 53 (4): 177- 185. |
WANG Weiliang, WANG Yuzhao, LYU Junfu, et al. Energy efficiency assessment of large capacity coal-fired boiler based on exergy analysis[J]. Electric Power, 2020, 53 (4): 177- 185. | |
27 |
RAZMI A, SOLTANI M, AGHANAJAFI C, et al. Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES)[J]. Energy Conversion and Management, 2019, 187, 262- 273.
DOI |
28 |
LI X Y, SHU G Q, TIAN H, et al. Dynamic modeling of CO2 transcritical power cycle for waste heat recovery of gasoline engines[J]. Energy Procedia, 2017, 105, 1576- 1581.
DOI |
[1] | 黄呈帅, 梁健, 李波, 杨亚欣, 胡杨, 姚尔人. 基于掺氢燃气轮机的综合能源系统热经济学性能研究[J]. 中国电力, 2024, 57(1): 195-208. |
[2] | 汪康康, 孙昕炜, 周波, 郑天文, 魏巍, 蒋力波. 基于压缩空气储能附加阻尼控制的电力系统低频振荡抑制策略[J]. 中国电力, 2023, 56(10): 115-123. |
[3] | 刘赫川, 周孝信, 杨小煜, 李亚楼, 李雄. 考虑天然气季节性存储的综合能源系统年度运行方式研究[J]. 中国电力, 2022, 55(4): 145-155. |
[4] | 文贤馗, 李翔, 邓彤天, 钟晶亮, 王锁斌, 刘石. 先进压缩空气储能系统的余热回收和利用[J]. 中国电力, 2022, 55(2): 28-34. |
[5] | 胡源, 薛松, 杨素, 唐程辉, 梁才, 熊天军. 综合能源背景下的配电网多场景规划[J]. 中国电力, 2021, 54(4): 175-184. |
[6] | 韩中合, 刘士名, 周权, 庞永超. 回热式压缩空气储能系统改造与分析[J]. 中国电力, 2016, 49(7): 90-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||