[1] SCHAIK N V, CZASZEJKO T. Conditions of discharge-free operation of XLPE insulated power cable systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4):1120-1130. [2] 胡文堂, 高胜友, 余绍峰, 等. 统计参数在变压器局部放电模式识别中的应用[J]. 高电压技术, 2009, 35(2):277-281 HU Wentang, GAO Shengyou, YU Shaofeng, et al. Application of statistic parameters in recognition of partial discharge in transformers[J]. High Voltage Engineering, 2009, 35(2):277-281 [3] 李培江, 朱晓锦, 尤婷. 基于神经网络GIS局部放电模式的识别[J]. 中国电力, 2013, 46(10):60-66, 83 LI Peijiang, ZHU Xiaojin, YOU Ting. Neural network based partial discharge pattern identification of GIS[J]. Electric Power, 2013, 46(10):60-66, 83 [4] 陈攀, 姚陈果, 廖瑞金, 等. 分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J]. 高电压技术, 2015, 41(10):3332-3341 CHEN Pan, YAO Chenguo, LIAO Ruijin, et al. Application of signals separated band energy spectrum and Mahalanobis clustering algorithm for switchgear partial discharge pattern recognition[J]. High Voltage Engineering, 2015, 41(10):3332-3341 [5] 周沙, 景亮. 基于矩特征与概率神经网络的局部放电模式识别[J]. 电力系统保护与控制, 2016, 44(3):98-102 ZHOU Sha, JING Liang. Pattern recognition of partial discharge based on moment features and probabilistic neural network[J]. Power System Protection and Control, 2016, 44(3):98-102 [6] 张晓星, 唐炬, 孙才新, 等. 基于多重分形维数的GIS局部放电模式识别[J]. 仪器仪表学报, 2007, 28(4):597-602 ZHANG Xiaoxing, TANG Ju, SUN Caixin, et al. PD pattern recognition based on multi-fractal dimensions in GIS[J]. Chinese Journal of Scientific Instrument, 2007, 28(4):597-602 [7] JIANG T Y, Li J, ZHENG Y B, et al. Improved bagging algorithm for pattern recognition in UHF signals of partial discharges[J]. Energies, 2011, 4(7):1087-1101. [8] 田双双, 靳一林, 舒乃秋, 等. 绝缘子污秽放电声发射信号特征量提取的研究[J]. 中国电力, 2016, 49(7):15-19, 38 TIAN Shuangshuang, JIN Yilin, SHU Naiqiu, et al. Research on the characteristics extraction of acoustic emission signal from contaminated insulator discharge[J]. Electric Power, 2016, 49(7):15-19, 38 [9] 石明江, 罗仁泽, 付元华. 小波和能量特征提取的旋转机械故障诊断方法[J]. 电子测量与仪器学报, 2015, 29(8):1114-1120 SHI Mingjiang, LUO Renze, FU Yuanhua. Fault diagnosis of rotating machinery based on wavelet and energy feature extraction[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(8):1114-1120 [10] 胡文龙, 乔晓艳. 基于肌电小波包统计特征的踝关节动作识别[J]. 测试技术学报, 2017, 31(2):100-106 HU Wenlong, QIAO Xiaoyan. Ankle motion classification based on wavelet packet statistic features of SEMG signal[J]. Journal of Test and Measurement Technology, 2017, 31(2):100-106 [11] 尚海昆, 苑津莎, 王瑜, 等. 基于交叉小波变换和相关系数矩阵的局部放电特征提取[J]. 电工技术学报, 2014, 29(4):274-281 SHANG Haikun, YUAN Jinsha, WANG Yu, et al. Feature extraction for partial discharge based on cross-wavelet transform and correlation coefficient matrix[J]. Transactions of China Electrotechnical Society, 2014, 29(4):274-281 [12] 唐炬, 樊雷, 张晓星, 等. 用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J]. 电工技术学报, 2015, 30(3):250-257 TANG Ju, FAN Lei, ZHANG Xiaoxing, et al. Multi-scale feature parameters extraction of GIS partial discharge signal with harmonic wavelet packet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(3):250-257 [13] 唐炬, 孟庆红, 谢颜斌, 等. 采用二元树复小波变换的GIS局放信号识别[J]. 高电压技术, 2010, 36(3):553-558 TANG Ju, MENG Qinghong, XIE Yanbin, et al. Recognition of partial discharge signals in GIS using dual-tree complex wavelet transform[J]. High Voltage Engineering, 2010, 36(3):553-558 [14] DARABAD V P. Application of ACF-wavelet feature extraction for classification of some artificial PD models of power transformer[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2018(6):3100-3114. [15] SU Mingshou, CHIA Chungchu, CHEN Chienyi, et al. Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach[J]. Electrical Power and Energy Systems, 2014, 61(10):173-179. [16] 唐铭. 以复合复小波系数为特征量的局部放电模式识别研究[D]. 重庆:重庆大学, 2007. [17] 李新, 任亚英, 彭怡, 等. 基于二元树复小波能量熵测度的局放模式识别[J]. 高压电器, 2009, 45(6):44-48 LI Xin, REN Yaying, PENG Yi, et al. Partial discharge pattern recognition based on the dual-tree complex wavelet energy entropy[J]. High Voltage Apparatus, 2009, 45(6):44-48 [18] UMAMAHESWARI R, SARATHI R. Feature extraction of UHF PD signals by wavelet packet based MRSD analysis for defect identification in gas insulated systems[C]//India Conference (INDICON), 2012 Annual IEEE. IEEE, 2012:1218−1222. [19] SURYAVANSHI H, VELANDY J, SURENDRAN J. Wavelet transform coherence for magnitude and phase spectrum prediction from high frequency transient signals:partial discharge in transformers[C]//IEEE International Conference on Power Electronics, Drives and Energy Systems. India, 2016:1−6. [20] SELESINCK I W, BARANIUK R G, KINGSBURRR N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6):123-151. [21] 唐炬, 董玉林, 樊雷, 等. 基于Hankel矩阵的复小波-奇异值分解法提取局部放电特征信息[J]. 中国电机工程学报, 2015, 35(7):1808-1817 TANG Ju, DONG Yulin, FAN Lei, et al. Feature information extraction of partial discharge signal with complex wavelet transform and singular value decomposition based on Hankel matrix[J]. Proceedings of the CSEE, 2015, 35(7):1808-1817 [22] 张广东, 秦睿, 张忠元, 等. 基于超高频特高频法的局部放电特征图谱提取与研究[J]. 高压电器, 2016, 52(9):71-77 ZHANG Guangdong, QIN Rui, ZHANG Zhongyuan, et al. Extraction and analysis of characteristic spectrum of partial discharge in GIS based on UHF method[J]. High Voltage Apparatus, 2016, 52(9):71-77 [23] DUDA R O, HART P E, STORK D G. 模式分类[M]. 北京:机械工业出版社, 2003. [24] VAPNIK V N. The nature of statistical learning theory[M]. New York, Springer-Verlag, 1998.
|