中国电力 ›› 2025, Vol. 58 ›› Issue (10): 206-215.DOI: 10.11930/j.issn.1004-9649.202411051
成诚1(
), 王一波2, 张源1, 霍耀佳2, 王立志1, 丁五行3
收稿日期:2024-11-14
发布日期:2025-10-23
出版日期:2025-10-28
作者简介:基金资助:
CHENG Cheng1(
), WANG Yibo2, ZHANG Yuan1, HUO Yaojia2, WANG Lizhi1, DING Wuxing3
Received:2024-11-14
Online:2025-10-23
Published:2025-10-28
Supported by:摘要:
针对现有SF6/N2混合气体GIS设备充气装置存在的充气速度缓慢及装置成本高昂等问题,提出了基于加热管道气体流量控制技术的混合气体管道直充方法,摒弃了传统意义上须内置MFC的需求。通过理论分析和ANSYS仿真确定了气体流量-温升实验平台的实验参数,构建了3 m加热管道、初始温差分别为20 ℃和30 ℃的气体流量预测模型,并结合串级模糊PID控制器实现气体流量的精准调控。实验结果显示,串级模糊PID控制器的性能评价指标均优于串级PID控制器,且当SF6初始温差为20 ℃或30 ℃,N2初始温差为30 ℃时,稳态输出的混合气体中SF6占比偏差低于1.0%。设计充气装置并进行验证,结果表明在充气压力高于0.2 MPa时,SF6占比偏差符合标准DL/T 2243—2021,能够满足现场充气需求。
成诚, 王一波, 张源, 霍耀佳, 王立志, 丁五行. SF6/N2混合气体GIS设备充气新技术[J]. 中国电力, 2025, 58(10): 206-215.
CHENG Cheng, WANG Yibo, ZHANG Yuan, HUO Yaojia, WANG Lizhi, DING Wuxing. Novel Filling Technology for SF6/N2 Mixed Gas GIS Equipment[J]. Electric Power, 2025, 58(10): 206-215.
| L/m | ΔT0/℃ | |||
| 1 | 10 | 3.51 | ||
| 20 | 1.67 | |||
| 30 | 1.09 | |||
| 3 | 10 | 1.11 | ||
| 20 | 0.54 | |||
| 30 | 0.36 |
表 1 不同条件下气体流量因温度检测误差导致的误差
Table 1 The error of gas flow caused by temperature detection error under different conditions
| L/m | ΔT0/℃ | |||
| 1 | 10 | 3.51 | ||
| 20 | 1.67 | |||
| 30 | 1.09 | |||
| 3 | 10 | 1.11 | ||
| 20 | 0.54 | |||
| 30 | 0.36 |
| 气体 | 初始温 差/℃ | 控制器 | td/s | ts/s | emin/ (m3·h–1) | ed/ (m3·h–1) | ||||||
| SF6 | 20 | 串级模糊PID | 57.3 | 73.5 | 4.3 | 0.14 | ||||||
| 串级PID | 91.5 | 123.1 | 5.8 | 0.23 | ||||||||
| 30 | 串级模糊PID | 42.1 | 62.6 | 3.3 | 0.10 | |||||||
| 串级PID | 87.3 | 109.5 | 5.4 | 0.20 | ||||||||
| N2 | 20 | 串级模糊PID | 65.3 | 87.8 | 4.9 | 0.16 | ||||||
| 串级PID | 106.7 | 125.4 | 6.9 | 0.26 | ||||||||
| 30 | 串级模糊PID | 62.4 | 76.1 | 4.3 | 0.12 | |||||||
| 串级PID | 98.4 | 121.3 | 5.8 | 0.25 |
表 2 2种气体流量控制器的控制性能评价参数对比
Table 2 Comparison of control performance evaluation parameters of two gas flow controllers
| 气体 | 初始温 差/℃ | 控制器 | td/s | ts/s | emin/ (m3·h–1) | ed/ (m3·h–1) | ||||||
| SF6 | 20 | 串级模糊PID | 57.3 | 73.5 | 4.3 | 0.14 | ||||||
| 串级PID | 91.5 | 123.1 | 5.8 | 0.23 | ||||||||
| 30 | 串级模糊PID | 42.1 | 62.6 | 3.3 | 0.10 | |||||||
| 串级PID | 87.3 | 109.5 | 5.4 | 0.20 | ||||||||
| N2 | 20 | 串级模糊PID | 65.3 | 87.8 | 4.9 | 0.16 | ||||||
| 串级PID | 106.7 | 125.4 | 6.9 | 0.26 | ||||||||
| 30 | 串级模糊PID | 62.4 | 76.1 | 4.3 | 0.12 | |||||||
| 串级PID | 98.4 | 121.3 | 5.8 | 0.25 |
| 1 | 岳嵩, 朱勇, 何龙寿, 等. 基于改进动态电弧模型的GIS快速暂态过电压特性研究[J]. 智慧电力, 2025, 53 (8): 114- 120. |
| YUE Song, ZHU Yong, HE Longshou, et al. Research on characteristics of very fast transient overvoltage in GIS based on an improved dynamic arc model[J]. Smart Power, 2025, 53 (8): 114- 120. | |
| 2 | 李峰, 孟圣坤, 陆飞, 等. 基于监督学习的直流偏磁特征分析及评价方法研究[J]. 智慧电力, 2023, 51 (8): 111- 118. |
| LI Feng, MENG Shengkun, LU Fei, et al. Characteristic analysis and evaluation method of DC magnetic bias based on supervised learning[J]. Smart Power, 2023, 51 (8): 111- 118. | |
| 3 | 和彦淼, 黄印, 颜湘莲, 等. SF6混合气体和环保替代气体设备标准化研究[J]. 中国电力, 2024, 57 (3): 95- 102. |
| HE Yanmiao, HUANG Yin, YAN Xianglian, et al. Standardization research on SF6 mixed gas and eco-friendly alternative gas equipment[J]. Electric Power, 2024, 57 (3): 95- 102. | |
| 4 | 朱榜超, 商琼玲, 黄珠羡. 基于SF6气体温度迟滞模型的密度监测失效判定策略[J]. 中国电力, 2024, 57 (5): 200- 210. |
| ZHU Bangchao, SHANG Qiongling, HUANG Zhuxian. SF6 gas temperature hysteresis model based density monitoring failure judgement criterion[J]. Electric Power, 2024, 57 (5): 200- 210. | |
| 5 | 张咪, 高克利, 侯华, 等. SF6替代绝缘气体的虚拟筛选与分子设计综述[J]. 高电压技术, 2023, 49 (7): 2816- 2830. |
| ZHANG Mi, GAO Keli, HOU Hua, et al. Review on computational screening and molecular design of replacement gases for SF6[J]. High Voltage Engineering, 2023, 49 (7): 2816- 2830. | |
| 6 | 马汝括, 董杰, 王雅湉, 等. 基于神经网络的高寒地区CF4和SF6/CF4检测[J]. 中国电力, 2024, 57 (3): 103- 112. |
| MA Rukuo, DONG Jie, WANG Yatian, et al. Neural network-based CF4 and SF6/CF4 detection in high altitude and extreme cold regions[J]. Electric Power, 2024, 57 (3): 103- 112. | |
| 7 | 闫超, 林悦德, 梁伟杰, 等. 基于气体流向的SF6充气装置的研制及应用[J]. 电工技术, 2020, (7): 99- 100. |
| YAN Chao, LIN Yuede, LIANG Weijie, et al. Development and application of SF6 inflating device based on gas flow direction[J]. Electric Engineering, 2020, (7): 99- 100. | |
| 8 | 姚钊泓, 陈翔, 林宏达, 等. 一种SF6快速充气装置的设计与应用[J]. 自动化应用, 2024, (4): 107- 109. |
| YAO Zhaohong, CHEN Xiang, LIN Hongda, et al. Design and application of an SF6 rapid inflation device[J]. Automation Application, 2024, (4): 107- 109. | |
| 9 | 国家能源局. 六氟化硫混合绝缘气体充补气技术规范: DL/T 2243—2021[S]. 北京: 中国电力出版社, 2021. |
| National Energy Bureau of the People's Republic of China. Specification for filling and supplying of SF6 gas mixture: DL/T 2243—2021[S]. Beijing: China Electric Power Press, 2021. | |
| 10 | 周倩, 柯锟, 张晓星, 等. 基于SF6混合气体绝缘性能的设备补气策略研究[J]. 电力工程技术, 2021, 40 (4): 175- 181. |
| ZHOU Qian, KE Kun, ZHANG Xiaoxing, et al. Air supply strategy of equipment based on SF6 mixed gas insulation performance[J]. Electric Power Engineering Technology, 2021, 40 (4): 175- 181. | |
| 11 | 周朕蕊, 韩冬, 赵明月, 等. SF6替代气体分解特性的研究综述[J]. 电工技术学报, 2020, 35 (23): 4998- 5014. |
| ZHOU Zhenrui, HAN Dong, ZHAO Mingyue, et al. Review on decomposition characteristics of SF6 alternative gases[J]. Transactions of China Electrotechnical Society, 2020, 35 (23): 4998- 5014. | |
| 12 | 马凤翔, 朱峰, 袁小芳, 等. 混合气体绝缘设备充、补气技术研究[J]. 安徽电气工程职业技术学院学报, 2019, 24 (1): 53- 58. |
| MA Fengxiang, ZHU Feng, YUAN Xiaofang, et al. Research on gas filling and supplying technology of mixed gas insulation equipment[J]. Journal of Anhui Electrical Engineering Professional Technique College, 2019, 24 (1): 53- 58. | |
| 13 | 董杰, 杨博, 伊国鑫, 等. 电力环保型混合绝缘气体配气方法优化[J]. 中国电力, 2024, 57 (6): 102- 109. |
| DONG Jie, YANG Bo, YI Guoxin, et al. Distribution optimization method for power environment-friendly mixed insulation gas[J]. Electric Power, 2024, 57 (6): 102- 109. | |
| 14 | 王战. 半导体工艺气体管道加热控制系统及控制方法研究[D]. 南京: 南京航空航天大学, 2021. |
| WANG Zhan. Research on heating control system and control method of gas pipeline of semiconductor process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. | |
| 15 | 冯忠园. 柔性管道加热系统优化及温度控制方法研究[D]. 昆明: 昆明理工大学, 2023. |
| FENG Zhongyuan. Research on optimization and temperature control method of flexible pipe heating system[D]. Kunming: Kunming University of Science and Technology, 2023. | |
| 16 | 王战, 高长水. 基于模糊广义预测控制的管道加热系统温度控制[J]. 机械制造与自动化, 2022, 51 (3): 229- 231. |
| WANG Zhan, GAO Changshui. Temperature control of pipeline heating system based on fuzzy generalized predictive control[J]. Machine Building & Automation, 2022, 51 (3): 229- 231. | |
| 17 | 孙勇, 吕全, 马宁, 等. 加热与常温输送在役原油管道对调运行投产技术[J]. 油气储运, 2024, 43 (2): 232- 239. |
| SUN Yong, LV Quan, MA Ning, et al. Commissioning technology for switching operation between in-service crude oil pipelines for heated and normal-temperature transmission[J]. Oil & Gas Storage and Transportation, 2024, 43 (2): 232- 239. | |
| 18 | 万军. 热输原油管道总传热系数的研究及应用[J]. 管道技术与设备, 2022, (5): 15- 18. |
| WAN Jun. Research and application of total heat transfer coefficient of heating crude oil pipeline[J]. Pipeline Technique and Equipment, 2022, (5): 15- 18. | |
| 19 | 郑伟龙. 12 kV开关柜温度场分析及优化设计[D]. 厦门: 厦门理工学院, 2021. |
| ZHENG Weilong. Temperature field analysis and optimization design of 12 kV switchgear[D]. Xiamen: Xiamen University of Technology, 2021. | |
| 20 | 周娟, 林加顺, 吴乃豪, 等. 一种联合PID控制与扩展卡尔曼滤波的磷酸铁锂电池荷电状态估算方法[J]. 电网技术, 2023, 47 (4): 1623- 1632. |
| ZHOU Juan, LIN Jiashun, WU Naihao, et al. State of charge estimation for LiFeO4 battery combining PID control and extended Kalman filter[J]. Power System Technology, 2023, 47 (4): 1623- 1632. | |
| 21 | 冯陈, 刘朝爽, 吴春旺, 等. 抽水蓄能机组新型变工况自适应模糊控制策略[J]. 电网技术, 2024, 48 (7): 2815- 2822. |
| FENG Chen, LIU Chaoshuang, WU Chunwang, et al. Innovative adaptive fuzzy control strategy for pumped storage units under variable operating conditions[J]. Power System Technology, 2024, 48 (7): 2815- 2822. | |
| 22 | 张建新, 江出阳, 苏寅生, 等. 一种基于Prony分析的水电机组调速器PID参数切换方法[J]. 南方电网技术, 2019, 13 (12): 60- 66, 84. |
| ZHANG Jianxin, JIANG Chuyang, SU Yinsheng, et al. A PID parameter switching method based on prony analysis for hydropower unit governor[J]. Southern Power System Technology, 2019, 13 (12): 60- 66, 84. | |
| 23 | 王育飞, 程伟, 薛花, 等. 基于串级PI-(1+PD)算法的含飞轮储能互联电网AGC控制器设计[J]. 电力系统保护与控制, 2023, 51 (14): 127- 138. |
| WANG Yufei, CHENG Wei, XUE Hua, et al. Controller design of an AGC based on a cascade PI-(1+PD) algorithm for an interconnected power grid with flywheel energy storage[J]. Power System Protection and Control, 2023, 51 (14): 127- 138. | |
| 24 | 李建林, 梁策, 曾飞, 等. 基于级联式模糊控制的电氢耦合直流微网能量管理策略研究[J]. 电力系统保护与控制, 2024, 52 (18): 87- 100. |
| LI Jianlin, LIANG Ce, ZENG Fei, et al. An energy management strategy for an electricity-hydrogen coupled DC microgrid based on cascade fuzzy control[J]. Power System Protection and Control, 2024, 52 (18): 87- 100. | |
| 25 | 杨帆, 杨平, 彭道刚. 检定炉炉温的阶跃响应试验建模与MCP-PID实时控制[J]. 电力科学与技术学报, 2020, 35 (6): 187- 193. |
| YANG Fan, YANG Ping, PENG Daogang. Step response modeling of calibrated furnace temperature and its MCP-PID real-time control[J]. Journal of Electric Power Science and Technology, 2020, 35 (6): 187- 193. | |
| 26 | 杨永辉, 谢丽蓉, 李佳明, 等. 基于模糊控制的储能参与一次调频综合控制策略[J]. 智慧电力, 2023, 51 (4): 38- 45. |
| YANG Yonghui, XIE Lirong, LI Jiaming, et al. Integrated control strategy of energy storage participating in primary frequency regulation based on fuzzy control[J]. Smart Power, 2023, 51 (4): 38- 45. | |
| 27 | 冀炳晖, 茅健, 钱波. 基于遗传算法-模糊PID的双喷头FDM型3D打印机温度控制方法[J]. 工程设计学报, 2024, 31 (2): 151- 159. |
| JI Binghui, MAO Jian, QIAN Bo. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31 (2): 151- 159. |
| [1] | 和彦淼, 黄印, 颜湘莲, 李志兵. SF6混合气体和环保替代气体设备标准化研究[J]. 中国电力, 2024, 57(3): 95-102. |
| [2] | 李学斌, 鲁旭臣, 李斌, 郑格玲, 李鑫涛, 庚振新, 单长旺, 林莘. SF6/N2流注放电仿真及协同效应研究[J]. 中国电力, 2019, 52(3): 102-108. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编