中国电力 ›› 2021, Vol. 54 ›› Issue (3): 23-30,37.DOI: 10.11930/j.issn.1004-9649.202007135

• 国家“十三五”智能电网重大专项专栏:(六)先进计算与人工智能技术专栏 • 上一篇    下一篇

基于函数挖掘的能源信息物理系统数据安全风险识别算法

邓松1, 蔡清媛1, 高昆仑2,3, 张建堂1, 饶玮2,3, 朱力鹏2,3   

  1. 1. 南京邮电大学 先进技术研究院,江苏 南京 210023;
    2. 全球能源互联网研究院有限公司,北京 102209;
    3. 电力系统人工智能(联研院)国家电网公司联合实验室,北京 102209
  • 收稿日期:2020-07-27 修回日期:2021-01-18 出版日期:2021-03-05 发布日期:2021-03-17
  • 作者简介:邓松(1980-),男,博士,副研究员,从事电网信息安全与防护,电力大数据及数据挖掘研究,E-mail:ds16090311@163.com;蔡清媛(1997-),女,硕士研究生,从事电网信息安全与防护、电力大数据及数据挖掘研究,E-mail:dmccxysc@163.com;高昆仑(1972-),男,博士,高级工程师(教授级),从事电力系统自动化与信息化技术研究,E-mail:gkl@geiri.sgcc.com.cn
  • 基金资助:
    国家自然科学基金资助项目(网络攻击下能源互联网数据容侵评估及可靠存储机制研究,51977113;面向有源配电网的数据传输优化及智能过滤机制,51507084)

Data Security Risk Recognition Algorithm for Energy Cyber Physics System Based on Function Mining

DENG Song1, CAI Qingyuan1, GAO Kunlun2,3, ZHANG Jiantang1, RAO Wei2,3, ZHU Lipeng2,3   

  1. 1. Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
    2. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China;
    3. Artificial Intelligence on Electric Power System State Grid Corporation Joint Laboratory (GEIRI), Beijing 102209, China
  • Received:2020-07-27 Revised:2021-01-18 Online:2021-03-05 Published:2021-03-17
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (Data Tolerance Intrusion Assessment and Reliable Storage for Energy Internet under Cyber Attacks, No.51977113, Data Transmission Optimization and Intelligent Filtering Mechanism for Active Distribution Network, No.51507084)

摘要: 数据安全风险评估对于能源信息物理系统安全稳定运行至关重要。现有的从二次设备、信息等角度来分析数据安全风险已经无法满足能源信息物理系统广泛的能源接入和各能源之间的能量、信息交互需求。首先提出基于粗糙集的数据安全风险要素特征选择算法,对影响能源信息物理系统中数据的安全风险特征集进行特征选择,降低能源信息物理系统数据安全风险要素集的维度;在此基础上,利用基因表达式编程(gene expression programming, GEP)的函数挖掘特性,提出基于混合GEP的能源信息物理系统数据安全风险识别算法,通过设计小生境种群生成策略以及动态自适应变异概率动态调整策略来提高数据安全风险识别的准确率和效率。仿真实验结果表明,所提算法对于复杂高维的能源信息物理系统数据安全风险集的识别和预测具有较高的准确率和较强的实用性,可为下一步制定能源信息物理系统数据安全防护策略提供理论方法支撑。

关键词: 基因表达式编程, 粗糙集, 特征选择, 风险识别, 能源信息物理系统

Abstract: Data security risk assessment is essential for the safe and stable operation of energy cyber physics system (CPS). The existing data security risk analysis from the perspective of secondary equipment and information cannot meet the requirements for extensive energy access as well as energy and information interaction between various energy sources in the energy CPS. Firstly, a feature selection algorithm for data security risk elements based on rough set (FSDSRF-RS) is proposed to select the data security risk feature sets in the energy CPS, consequently reducing the dimensions of the data security risk element sets of the energy CPS. And then, a data security risk recognition algorithm for energy cyber physics system based on hybrid gene expression programming (DSRR-HGEP) is proposed. In the DSRR-HGEP, a niche-based population generation strategy and a dynamic adaptive mutation probability adjustment strategy are designed to improve the accuracy and efficiency of data security risk identification. Simulation and experimental results show that the proposed algorithm in this paper has a high recognition and prediction accuracy for the complex and high-dimensional data security risk sets in the energy CPS, and can provide a theoretical support for formulating data security protection strategies of the energy cyber physical system in the future.

Key words: gene expression programming, rough set, feature selection, risk recognition, energy cyber physics system