[1] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315–3325 LI Xiangjun, WANG Shangxing, HUI Dong. Summary and prospect of operation control and application method for battery energy storage systems[J]. Power System Technology, 2017, 41(10): 3315–3325 [2] 任大伟,金晨,肖晋宇,等.计及灵活性基于时序的“十四五”储能需求分析[J].中国电力,2021,54(8):190-198. REN Dawei, JIN Chen, XIAO Jinyu, et al.Demand analysis of energy storage for the 14th five-year plan period basedon time series considering power system flexibility[J]. Electric Power, 2021, 54(8): 190-198. [3] MARGARET Mann, SUSAN Babinec, VICKY Putsche, et al. Energy storage grand challenge energy storage market report[R]. U. S. Department of Energy, 2020. [4] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电化学储能电站用锂离子电池管理系统技术规范: GB/T 34131—2017[S]. 北京: 中国标准出版社. [5] 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2018[S]. 北京: 中国标准出版社, 2018. [6] Datasheet of LTC6813 Multicell Battery Monitor[EB/OL]. https://www.linear.com/LTC6813-1.html. [7] BERECIBAR M, GARMENDIA M, GANDIAGA I, et al. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy, 2016, 103: 784–796. [8] HE Y, LIU X T, ZHANG C B, et al. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy, 2013, 101: 808–814. [9] XING Y J, MA E W M, TSUI K L, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011, 4(11): 1840–1857. [10] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background[J]. Journal of Power Sources, 2004, 134(2): 252–261. [11] HOU C Y, YANG S L, HU J, et al. A study of SOC estimation algorithm for energy storage Lithium battery pack based on information fusion technology[C]//2014 International Conference on Power System Technology. Chengdu, China. IEEE, 2014: 3157–3161. [12] 张凯, 杨靖, 粗糙集理论及其应用综述[J], 物联网技术, 2017(6): 93-98. [13] 陈娟, 侯朝勇, 许守平, 等. 一种储能系统性能和状态的在线评估装置及方法和系统: CN112394293A[P]. 2021-02-23. [14] TSUMOTO S. Automated extraction of hierarchical decision rules from clinical databases using rough set model[J]. Expert Systems With Applications, 2003, 24(2): 189–197. [15] SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6): 833–849. [16] QIAN Y H, LIANG J Y, LI D Y, et al. Measures for evaluating the decision performance of a decision table in rough set theory[J]. Information Sciences, 2008, 178(1): 181–202. [17] KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1/2): 273–324. [18] DASH M, LIU H. Consistency-based search in feature selection[J]. Artificial Intelligence, 2003, 151(1/2): 155–176. [19] LEE C, LEE G G. Information gain and divergence-based feature selection for machine learning-based text categorization[J]. Information Processing & Management, 2006, 42(1): 155–165. [20] QIAN Y H, LIANG J Y, DANG C Y. Converse approximation and rule extraction from decision tables in rough set theory[J]. Computers & Mathematics With Applications, 2008, 55(8): 1754–1765. [21] 同济大学数学系. 概率论与数理统计[M]. 北京: 人民邮电出版社, 2017.
|