中国电力 ›› 2019, Vol. 52 ›› Issue (9): 93-101.DOI: 10.11930/j.issn.1004-9649.201806108

• 电网 • 上一篇    下一篇

采用Fisher线性判别法提取GIS内部局部放电信号最优能量特征

田宇1, 罗沙1, 李宾宾1,2, 孙文3   

  1. 1. 国网安徽省电力有限公司, 安徽 合肥 230022;
    2. 国网安徽省电力有限力公司电力科学研究院, 安徽 合肥 230022;
    3. 国网电力科学研究院, 江苏 南京 211000
  • 收稿日期:2018-06-27 修回日期:2019-02-27 出版日期:2019-09-05 发布日期:2019-09-19
  • 作者简介:田宇(1976-),男,高级工程师,从事电网变电设备检修与带电检测技术研究工作,E-mail:tiany_1976@126.com
  • 基金资助:
    国家自然科学基金资助项目(51537009);国网安徽省电力有限公司科技项目(52120016001U)。

Optimal Energy Features of Partial Discharge Signals in GIS Extracted by Fisher Linear Discriminant

TIAN Yu1, LUO Sha1, LI Binbin1,2, HU Yong3   

  1. 1. State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China;
    2. Power Research Institute of Anhui Electric Power Co., Ltd., Hefei 230022, China;
    3. State Grid Electric Power Research Institute, Nanjing 210000, China
  • Received:2018-06-27 Revised:2019-02-27 Online:2019-09-05 Published:2019-09-19
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51537009) and Science and Technology Project of Anhui Electric Power Co., Ltd., of SGCC (No.52120016001U).

摘要: 采用二元树复小波变换(DT-CWT)对特高频局部放电(PD)信号进行多尺度分解,求解了复小波最优分解层数,提取了最优分解尺度下的特高频 PD信号实部和虚部高频层小波能量,并采用Fisher线性判别方法对能量特征进行选择,最后进行PD类型辨识。识别结果表明:优选后的实部和虚部高频层小波能量特征可以有效识别4种典型绝缘缺陷,识别率均达到了92.5%及以上,且最优复小波能量(OCWEF)特征在PD类型辨识中具有更优的敏感性和识别效果。

关键词: GIS, 局部放电, 能量特征, Fisher线性判别, 特征选择, 高电压测量技术

Abstract: The dual-tree complex wavelet transform (DT-CWT) is adopted to make a multi-scale decomposition of UHF partial discharge (PD) signals, and an optimal algorithm for solving DT-CWT decomposition is proposed. In addition, the optimal complex wavelet energy (OCWE) features are extracted from the high-layer real and imaginary parts of UHF PD signals after decomposed by DT-CWT, and the fisher linear discriminant method is adopted to select the energy features. Finally, the selected features are used for PD type recognition. The results show that the high-layer wavelet energy features can effectively recognize four typical insulation defects in GIS with a recognition accuracy reaching 94.5% or above. It is proved that the OCWE features are more suitable for PD recognition.

Key words: gas insulated switchgear, partial discharge, energy features, fisher linear discriminant, features selection, high voltage measurement technology

中图分类号: