中国电力 ›› 2014, Vol. 47 ›› Issue (7): 144-149.DOI: 10.11930/j.issn.1004-9649.2014.7.144.5

• 节能与环保 • 上一篇    下一篇

电力行业SO2去除量驱动因素分析

范长健1, 2, 李媛1, 2, 海热提·吐尔逊1, 2, 王寿鹤1, 2   

  1. 1. 北京化工大学 化学工程学院, 北京 100029;
    2. 北京市水处理环保材料工程技术中心,北京 100029
  • 收稿日期:2014-03-20 出版日期:2014-07-18 发布日期:2015-12-10
  • 作者简介:范长健(1988—),男,河北沧州人,硕士研究生,从事环境科学与工程项目研究。E-mail: fcj880207@163.com
  • 基金资助:
    环保公益性行业科研专项资助项目(污染减排的科技贡献度与科技减排国家行动方案研究)(201209037)

Analysis on of the Driving Forces Impacting SO2 Removal in Electric Power Industry

FAN Chang-jian1, 2, LI Yuan1, 2, HAI Re-ti·tuerxun1, 2, WANG Shou-he1, 2   

  1. 1. The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing 100029, China
  • Received:2014-03-20 Online:2014-07-18 Published:2015-12-10
  • Supported by:
    This work is supported by Special Scientific Research Program on Environmental Protection for Public Welfare(Study on Scientific and Technological Contribution of Emission Control and on National Action Program of Scientific Emission Control) (NO.201209037)

摘要: 为探究“十一五”期间,电力行业SO2去除量增加的原因,找出SO2减排工作的不足。利用对数平均迪氏指数法(LMDI)对电力行业SO2去除量变化的主要驱动因素进行分析,将SO2去除量变化的因素分解为末端治理效应、结构效应、技术进步效应、政策效应和投资效应。研究发现,2005—2011年,中国SO2去除量升高主要归功于末端治理效应,其次是结构效应。在此基础上,利用偏最小二乘法构建了去除量和主要驱动因素的回归方程,以期为各级政府政策的制定和企业实现节能减排提供参考和依据。

关键词: 电力行业, 污染物排放, LMDI, 偏最小二乘法, SO2

Abstract: In order to investigate what exactly leads to the increase of the SO2 removal volume and find out the drawbacks in SO2 emission reduction during the period of the 11th Five-Year, the major driving factors of SO2 removal in electric power industry are analyzed by using the LMDI method in which the factors are decomposed into terminal treatment effect, structure effect, technological progressing effect, policy effect and investment effect. The research results illustrate that during the period of 2005-2011, the terminal treatment effect contributes the most to the increase of SO2 removal volume, and the structure effect contributes the second most. In addition, the regression equations of the SO2 removal volume and its driving factors are set up by adopting partial least squares to provide a reference not only for the governments to make their policies but also for the enterprises to implement energy-saving and emission reduction.

Key words: electric power industry, pollutant emission, LMDI, partial least squares, SO2

中图分类号: