中国电力 ›› 2024, Vol. 57 ›› Issue (4): 118-129.DOI: 10.11930/j.issn.1004-9649.202304063
刘道兵1,2(), 齐越1,2(
), 李世春1,2, 鲍妙生1,2, 郭营营1,2, 李珏岑1,2
收稿日期:
2023-04-19
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
刘道兵(1974—),男,博士,副教授,从事电力系统稳定与控制研究,E-mail:liudb@ctgu.edu.cn基金资助:
Daobing LIU1,2(), Yue QI1,2(
), Shichun LI1,2, Miaosheng BAO1,2, Yingying GUO1,2, Juecen LI1,2
Received:
2023-04-19
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准确地构建稳定域边界。针对传统连续潮流法和非线性规划法计算量大的问题,提出一种基于SVSR边界拓扑性质的SVSR边界构建优化模型,根据边界连续且光滑的性质,由已知边界点通过预测-校正方法直接计算相邻边界点。在此模型基础上提出一种极限诱导分岔识别方法,构建考虑极限诱导分岔的SVSR边界。最后通过算例分析验证了所提方法的可行性和准确性。
刘道兵, 齐越, 李世春, 鲍妙生, 郭营营, 李珏岑. 考虑极限诱导分岔的静态电压稳定域[J]. 中国电力, 2024, 57(4): 118-129.
Daobing LIU, Yue QI, Shichun LI, Miaosheng BAO, Yingying GUO, Juecen LI. Static Voltage Stability Region Considering Limit Induced Bifurcation[J]. Electric Power, 2024, 57(4): 118-129.
标号 | 坐标 | 标号 | 坐标 | |||
0 | (0.1006, 0.0979) | 12 | (0.1279, 0.0843) | |||
1 | (0.0919, 0.1019) | 13 | (0.1378, 0.0790) | |||
2 | (0.0833, 0.1057) | 14 | (0.1481, 0.0732) | |||
3 | (0.0747, 0.1093) | 15 | (0.1589, 0.0668) | |||
4 | (0.0660, 0.1128) | 16 | (0.1704, 0.0598) | |||
5 | (0.0569, 0.1162) | 17 | (0.1825, 0.0520) | |||
6 | (0.0472, 0.1197) | 18 | (0.1953, 0.0434) | |||
7 | (0.0363, 0.1233) | 19 | (0.2087, 0.0339) | |||
8 | (0.0228, 0.1273) | 20 | (0.2228, 0.0235) | |||
9 | (–0.0023, 0.1327) | 21 | (0.2373, 0.0122) | |||
10 | (0.1094, 0.0979) | 22 | (0.2492, 0.0) | |||
11 | (0.1185, 0.0892) |
表 1 SVSR边界点计算结果
Table 1 SVSR boundary point calculation results
标号 | 坐标 | 标号 | 坐标 | |||
0 | (0.1006, 0.0979) | 12 | (0.1279, 0.0843) | |||
1 | (0.0919, 0.1019) | 13 | (0.1378, 0.0790) | |||
2 | (0.0833, 0.1057) | 14 | (0.1481, 0.0732) | |||
3 | (0.0747, 0.1093) | 15 | (0.1589, 0.0668) | |||
4 | (0.0660, 0.1128) | 16 | (0.1704, 0.0598) | |||
5 | (0.0569, 0.1162) | 17 | (0.1825, 0.0520) | |||
6 | (0.0472, 0.1197) | 18 | (0.1953, 0.0434) | |||
7 | (0.0363, 0.1233) | 19 | (0.2087, 0.0339) | |||
8 | (0.0228, 0.1273) | 20 | (0.2228, 0.0235) | |||
9 | (–0.0023, 0.1327) | 21 | (0.2373, 0.0122) | |||
10 | (0.1094, 0.0979) | 22 | (0.2492, 0.0) | |||
11 | (0.1185, 0.0892) |
标号 | 最小特征值 | 标号 | 最小特征值 | 标号 | 最小特征值 | |||||
1 | 0.0 | 10 | 0.0067 | 19 | 0.0214 | |||||
2 | 0.0 | 11 | 0.0084 | 20 | 0.0230 | |||||
3 | 0.0 | 12 | 0.0100 | 21 | 0.0247 | |||||
4 | 0.0 | 13 | 0.0117 | 22 | 0.0264 | |||||
5 | 0.0 | 14 | 0.0133 | 23 | 0.0281 | |||||
6 | 0.0 | 15 | 0.0149 | 24 | 0.0299 | |||||
7 | 0.0013 | 16 | 0.0165 | 25 | 0.0317 | |||||
8 | 0.0031 | 17 | 0.0181 | 26 | 0.0336 | |||||
9 | 0.0050 | 18 | 0.0197 |
表 2 考虑LIB的临界点最小特征值
Table 2 Minimum eigenvalue considering critical point of LIB
标号 | 最小特征值 | 标号 | 最小特征值 | 标号 | 最小特征值 | |||||
1 | 0.0 | 10 | 0.0067 | 19 | 0.0214 | |||||
2 | 0.0 | 11 | 0.0084 | 20 | 0.0230 | |||||
3 | 0.0 | 12 | 0.0100 | 21 | 0.0247 | |||||
4 | 0.0 | 13 | 0.0117 | 22 | 0.0264 | |||||
5 | 0.0 | 14 | 0.0133 | 23 | 0.0281 | |||||
6 | 0.0 | 15 | 0.0149 | 24 | 0.0299 | |||||
7 | 0.0013 | 16 | 0.0165 | 25 | 0.0317 | |||||
8 | 0.0031 | 17 | 0.0181 | 26 | 0.0336 | |||||
9 | 0.0050 | 18 | 0.0197 |
场景 | SVSR坐标轴变量 | |
1 | 负荷节点4的有功功率和无功功率 | |
2 | 负荷节点7和发电机节点8的有功功率 | |
3 | 负荷节点9和10的有功功率 |
表 3 IEEE 14节点的SVSR场景
Table 3 SVSR scenario of IEEE 14 bus
场景 | SVSR坐标轴变量 | |
1 | 负荷节点4的有功功率和无功功率 | |
2 | 负荷节点7和发电机节点8的有功功率 | |
3 | 负荷节点9和10的有功功率 |
场景 | CPF法时间/s | 非线性规划法时间/s | 本文方法时间/s | |||
1 | 4.6744 | 4.7058 | 1.1338 | |||
2 | 6.0923 | 4.6270 | 1.0305 | |||
3 | 6.4668 | 4.6975 | 1.1701 |
表 4 不同方法计算时间对比
Table 4 Comparison of calculation time with different methods
场景 | CPF法时间/s | 非线性规划法时间/s | 本文方法时间/s | |||
1 | 4.6744 | 4.7058 | 1.1338 | |||
2 | 6.0923 | 4.6270 | 1.0305 | |||
3 | 6.4668 | 4.6975 | 1.1701 |
1 | 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41 (2): 461- 475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41 (2): 461- 475. | |
2 | 肖先勇, 郑子萱. “双碳” 目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54 (1): 47- 59. |
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques and challenges[J]. Advanced Engineering Sciences, 2022, 54 (1): 47- 59. | |
3 | 齐金山, 姚良忠, 廖思阳, 等. 高比例新能源电力系统静态电压稳定裕度在线概率评估[J]. 电力系统保护与控制, 2023, 51 (5): 47- 57. |
QI Jinshan, YAO Liangzhong, LIAO Siyang, et al. Online probabilistic assessment of static voltage stability margin for power systems with a high proportion of renewable energy[J]. Power System Protection and Control, 2023, 51 (5): 47- 57. | |
4 | 吴亚宁, 罗毅, 雷成, 等. 基于改进型PEM和L指标的含风电场电力系统静态电压稳定评估[J]. 中国电力, 2022, 55 (9): 192- 203. |
WU Yaning, LUO Yi, LEI Cheng, et al. Steady-state voltage stability evaluation of power system containing wind farm based on improved PEM and L index[J]. Electric Power, 2022, 55 (9): 192- 203. | |
5 | 刘世超, 刘艳, 张慧, 等. 基于安全域校核的含风电系统负荷恢复优化[J]. 电网技术, 2021, 45 (8): 3061- 3069. |
LIU Shichao, LIU Yan, ZHANG Hui, et al. Load restoration optimization of wind power integrated system considering security region examination[J]. Power System Technology, 2021, 45 (8): 3061- 3069. | |
6 | 陈中, 朱政光, 严俊, 等. 基于交直流混联系统静态安全域安全校正控制后的优化调度[J]. 电力自动化设备, 2021, 41 (4): 139- 147, 169. |
CHEN Zhong, ZHU Zhengguang, YAN Jun, et al. Optimal dispatch after security correction control based on steady-state security region of AC/DC hybrid system[J]. Electric Power Automation Equipment, 2021, 41 (4): 139- 147, 169. | |
7 | 刘石川, 雷轲, 刘紫玉, 等. 基于静态安全域的含新能源输电网随机最优潮流[J]. 电力系统及其自动化学报, 2023, 35 (3): 94- 101. |
LIU Shichuan, LEI Ke, LIU Ziyu, et al. Stochastic optimal power flow in transmission grid with renewable energy based on steady-state security region[J]. Proceedings of the CSU-EPSA, 2023, 35 (3): 94- 101. | |
8 |
YU Y, LIU Y, QIN C, et al. Theory and method of power system integrated security region irrelevant to operation states: an introduction[J]. Engineering, 2020, 6 (7): 754- 777, 854–880.
DOI |
9 | 陈波, 陈秋逸, 郑富永, 等. 基于电压灵敏度的交直流电力系统静态电压安全域评估方法[J]. 智慧电力, 2022, 50 (6): 28- 34. |
CHEN Bo, CHEN Qiuyi, ZHENG Fuyong, et al. Evaluation method of static voltage security region of AC/DC power system based on voltage sensitivity[J]. Smart Power, 2022, 50 (6): 28- 34. | |
10 | LAI Q P, LIU C X, SUN K. Analytical static voltage stability boundary based on holomorphic embedding[J]. International Journal of Electrical Power & Energy Systems, 2022, 134, 107386. |
11 | 李雪, 张琳玮, 姜涛, 等. 基于拉格朗日乘子的电力系统安全域边界通用搜索方法[J]. 中国电机工程学报, 2021, 41 (15): 5139- 5153. |
LI Xue, ZHANG Linwei, JIANG Tao, et al. General algorithm for exploring security region boundary in power systems using Lagrange multiplier[J]. Proceedings of the CSEE, 2021, 41 (15): 5139- 5153. | |
12 | LI X, ZHANG L W, JIANG T, et al. Relaxed decoupled direct calculation of voltage collapse points and its application in static voltage stability region boundary formation[J]. International Journal of Electrical Power & Energy Systems, 2021, 125, 106452. |
13 |
CHIANG H D, FLUECK A J, SHAH K S, et al. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations[J]. IEEE Transactions on Power Systems, 1995, 10 (2): 623- 634.
DOI |
14 | 王妍, 高山. 基于改进Chord法的电力系统连续潮流计算新方法[J]. 电力系统保护与控制, 2022, 50 (4): 112- 119. |
WANG Yan, GAO Shan. A new method of power system continuous flow calculation based on an improved Chord method[J]. Power System Protection and Control, 2022, 50 (4): 112- 119. | |
15 | 金吉良, 李小腾, 梁航, 等. 基于改进连续潮流法的电压稳定极限计算方法[J]. 智慧电力, 2021, 49 (3): 46- 50, 87. |
JIN Jiliang, LI Xiaoteng, LIANG Hang, et al. Calculation method of voltage stability limit based on improved continuous power flow method[J]. Smart Power, 2021, 49 (3): 46- 50, 87. | |
16 |
QIU Y W, WU H, SONG Y H, et al. Global approximation of static voltage stability region boundaries considering generator reactive power limits[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5682- 5691.
DOI |
17 |
NEVES L S, COSTA ALBERTO L F. On the computation of the locally closest bifurcation point considering loading uncertainties and reactive power limits[J]. IEEE Transactions on Power Systems, 2020, 35 (5): 3885- 3894.
DOI |
18 | 姜涛, 李雪, 李国庆, 等. 含多端柔性直流的交直流电力系统静态电压稳定域构建方法[J]. 电工技术学报, 2022, 37 (7): 1746- 1759. |
JIANG Tao, LI Xue, LI Guoqing, et al. A predictor-corrector algorithm for forming voltage stability region of hybrid AC/DC power grid with inclusion of VSC-MTDC[J]. Transactions of China Electrotechnical Society, 2022, 37 (7): 1746- 1759. | |
19 |
冯卓诚, 万凯遥, 姜彤. 基于渐近数值法的静态电压稳定域边界高阶拟合方法[J]. 电力系统自动化, 2020, 44 (7): 100- 106.
DOI |
FENG Zhuocheng, WAN Kaiyao, JIANG Tong. High-order fitting method of boundary for static voltage stability region based on asymptotic numerical method[J]. Automation of Electric Power Systems, 2020, 44 (7): 100- 106.
DOI |
|
20 |
LIN S J, YANG Y R, LIU M B, et al. Static voltage stability margin calculation of power systems with high wind power penetration based on the interval optimisation method[J]. IET Renewable Power Generation, 2020, 14 (10): 1728- 1737.
DOI |
21 | 姜涛, 张明宇, 崔晓丹, 等. 电力系统静态电压稳定域边界快速搜索的优化模型[J]. 电工技术学报, 2018, 33 (17): 4167- 4179. |
JIANG Tao, ZHANG Mingyu, CUI Xiaodan, et al. A novel optimization model to explore static voltage stability region boundary in bulk power systems[J]. Transactions of China Electrotechnical Society, 2018, 33 (17): 4167- 4179. | |
22 |
YANG T K, YU Y X. Steady-state security region-based voltage/var optimization considering power injection uncertainties in distribution grids[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2904- 2911.
DOI |
23 | JIANG T, WAN K, FENG Z. Boundary derivative direct method for computing saddle node bifurcation points in voltage stability analysis[J]. International Journal of Electrical Power & Energy Systems, 2019, 112 (11): 199- 208. |
24 | 邓慧琼, 陈心耘, 吴俊媛, 等. 兼顾电压稳定和连锁故障触发的电网预防策略研究[J]. 智慧电力, 2022, 50 (1): 1- 6, 36. |
DENG Huiqiong, CHEN Xinyun, WU Junyuan, et al. Prevention strategy of power grid considering voltage stability and cascading outage triggering[J]. Smart Power, 2022, 50 (1): 1- 6, 36. | |
25 | 李生虎, 夏伟健, 叶剑桥, 等. 静态电压稳定分析中L指标与特征值换算关系及L阈值确定方法[J]. 电网技术, 2023, 47 (9): 3828- 3837. |
LI Shenghu, XIA Weijian, YE Jianqiao, et al. Exchange relation with eigenvalues and threshold determination of L index for power system static voltage stability analysis[J]. Power System Technology, 2023, 47 (9): 3828- 3837. | |
26 | 马兆兴, 万秋兰, 李洪美. 考虑极限诱导分岔的电压稳定研究[J]. 电力系统保护与控制, 2011, 39 (20): 24- 29, 37. |
MA Zhaoxing, WAN Qiulan, LI Hongmei. Research on voltage stability analysis of limit induced bifurcation[J]. Power System Protection and Control, 2011, 39 (20): 24- 29, 37. |
[1] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[2] | 白望望, 杨德州, 李万伟, 王涛, 张耀忠. 基于HC-MOPSO的储能电站两阶段选址定容方法[J]. 中国电力, 2024, 57(12): 148-156. |
[3] | 马喜平, 李亚昕, 梁琛, 董晓阳, 徐瑞. 考虑高比例多元调节资源互动的配电网无功优化降损方法[J]. 中国电力, 2024, 57(1): 123-132. |
[4] | 吴亚宁, 罗毅, 雷成, 黄豫, 梁宇, 周生存, 聂金峰. 基于改进型PEM和L指标的含风电场电力系统静态电压稳定评估[J]. 中国电力, 2022, 55(9): 192-203. |
[5] | 曹新慧, 车勇, 司政, 开赛江, 周专, 袁铁江. 广域储能电站定容-选址一体规划[J]. 中国电力, 2022, 55(7): 110-120. |
[6] | 徐艳春, 蒋伟俊, 孙思涵, MI Lu. 含高渗透率风电的配电网暂态电压量化评估方法[J]. 中国电力, 2022, 55(7): 152-162. |
[7] | 吴亚宁, 罗毅, 周生存, 汤木易, 易煊承. 计及源-荷功率波动性的静态电压稳定故障快速筛选和排序方法[J]. 中国电力, 2022, 55(11): 29-40. |
[8] | 白帅涛, 陈得治, 马世英, 董清, 汤伟, 吉平, 杨铖, 蒋希凯. 多分层直流馈入的特高压环网开断运行特性及安控措施[J]. 中国电力, 2020, 53(10): 206-214. |
[9] | 陈新琪, 秦刚华, 杨敏, 赵力航, 陈蓉, 谢葛尚. 基于PSCAD的电力系统电压调节器仿真分析[J]. 中国电力, 2019, 52(3): 81-86,139. |
[10] | 王继飞, 王永星, 杨宇静, 王延平. 光伏电站并入农配网对地区电网的影响[J]. 中国电力, 2018, 51(6): 150-154. |
[11] | 姚刚, 赵翔宇, 贺先强, 黄晓旭, 朱椤方. 基于Power World的风电最优接入方案研究[J]. 中国电力, 2017, 50(6): 140-145. |
[12] | 陈刚,范成围,伍文城,孙景涛,胡柏玮. 中长期电压稳定时域仿真软件应用评估[J]. 中国电力, 2016, 49(10): 79-83. |
[13] | 桂永光,刘桂英,粟时平,贾学瑞,刘庆峰,郑刚. STATCOM在海南电网中的应用[J]. 中国电力, 2015, 48(4): 141-146. |
[14] | 许晓艳,马烁,黄越辉,常喜强. 大规模风电接入对电网静态电压稳定性影响机理研究[J]. 中国电力, 2015, 48(3): 139-143. |
[15] | 杨汾艳,黄弘扬,徐政. 广东电网负荷中心区SVC应用研究[J]. 中国电力, 2015, 48(2): 90-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||