[1] 张恺凯, 杨秀媛, 卜从容, 等. 基于负荷实测的配电网理论线损分析及降损对策[J]. 中国电机工程学报, 2013, 33(增刊1): 92–97 ZHANG Kaikai, YANG Xiuyuan, BU Congrong, et al. Theoretical analysis on distribution network loss based on load measurement and countermeasures to reduce the loss[J]. Proceedings of the CSEE, 2013, 33(S1): 92–97 [2] 李学平, 刘怡然, 卢志刚, 等. 基于聚类的阶段理论线损快速计算与分析[J]. 电工技术学报, 2015, 30(12): 367–376 LI Xueping, LIU Yiran, LU Zhigang, et al. Phase theoretical line loss calculation and analysis based on clustering theory[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 367–376 [3] 李亚, 刘丽平, 李柏青, 等. 基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J]. 中国电机工程学报, 2016, 36(17): 4543–4552 LI Ya, LIU Liping, LI Baiqing, et al. Calculation of line loss rate in transformer district based on improved K-means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17): 4543–4552 [4] 李亚. 基于数据挖掘技术的台区线损计算方法研究[D]. 北京: 华北电力大学(北京), 2017. LI Ya. Research on calculation method of line loss in transformer district based on data mining technology[D]. Beijing: North China Electric Power University, 2017. [5] LIU L P, LI B Q, LI Y, et al. Calculation of line loss in low-voltage transformer district based on BP network model optimized by LM algorithm[C]//2016 IEEE Electrical Power and Energy Conference. Ottawa, ON, Canada. IEEE, 2016: 1–6. [6] 刘亚丽, 李英娜, 李川. 基于遗传算法优化BP神经网络的线损计算研究[J]. 计算机应用与软件, 2019, 36(3): 72–75 LIU Yali, LI Yingna, LI Chuan. Line loss calculation of optimized bp neural network based on genetic algorithm[J]. Computer Applications and Software, 2019, 36(3): 72–75 [7] 姜惠兰, 安敏, 刘晓津, 等. 基于动态聚类算法径向基函数网络的配电网线损计算[J]. 中国电机工程学报, 2005, 25(10): 35–39 JIANG Huilan, AN Min, LIU Xiaojin, et al. The calculation of energy losses in distribution systems based on RBF network with dynamic clustering algorithm[J]. Proceedings of the CSEE, 2005, 25(10): 35–39 [8] 姜惠兰, 刘文良, 孟庆强, 等. 配电网线损计算径向基函数神经网络方法[J]. 自动化学报, 2007, 33(3): 334–336 JIANG Huilan, LIU Wenliang, MENG Qingqiang, et al. RBFNN method of calculating energy losses of power distribution systems[J]. Acta Automatica Sinica, 2007, 33(3): 334–336 [9] 秦勇明, 张伟, 周荣, 等. 基于径向基函数神经网络的低压配电网三相不平衡附加线损研究[J]. 电气自动化, 2019, 41(5): 45–48 QIN Yongming, ZHANG Wei, ZHOU Rong, et al. Study on three-phase unbalanced additional line loss in the low-voltage distribution network based on radial basis function neural network[J]. Electrical Automation, 2019, 41(5): 45–48 [10] JIANG H L, AN M, LIU J, et al. A practical method of calculating the energy losses in distribution systems based on RBF network[C]//2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. Dalian. IEEE, 2005: 1–6. [11] 唐晓勇, 江亚群, 黄纯, 等. 改进ASMDE算法和RBFNN的配电网线损计算[J]. 计算机工程与应用, 2015, 51(13): 245–250 TANG Xiaoyong, JIANG Yaqun, HUANG Chun, et al. Calculation of power loss in distribution systems based on improved ASMDE algorithm and RBFNN[J]. Computer Engineering and Applications, 2015, 51(13): 245–250 [12] 胡婷, 张银芽, 杨东俊, 等. 确定特高压交流跨区电能交易中计划综合网损率的新方法[J]. 电网技术, 2014, 38(9): 2556–2561 HU Ting, ZHANG Yinya, YANG Dongjun, et al. A new method to determine scheduled network composite loss rate in UHVAC inter-regional electricity transaction[J]. Power System Technology, 2014, 38(9): 2556–2561 [13] LIU L P, ZHANG J, WANG Q, et al. Theoretical calculation and evaluation of the line losses on UHV AC demonstration project[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China. IEEE, 2015: 1299–1303. [14] 麻卫峰, 王成, 王金亮, 等. 基于激光点云的高压输电线覆冰厚度反演[J]. 电力系统保护与控制, 2021, 49(4): 89–95 MA Weifeng, WANG Cheng, WANG Jinliang, et al. Inversion of ice thickness for high voltage transmission line based on a LiDAR point cloud[J]. Power System Protection and Control, 2021, 49(4): 89–95 [15] ZHANG B, LI W, HE J L, et al. Analysis of ion flow field of UHV/EHV AC transmission lines[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2): 496–504. [16] LIU Y P, CHEN S J, HUANG S L. Evaluation of corona loss in 750 kV four-circuit transmission lines on the same tower considering complex meteorological conditions[J]. IEEE Access, 2018, 6: 67427–67433. [17] 李淼. 特高压交流输电线路电场计算与电晕效应研究 [D]. 西安: 西安科技大学, 2017. LI Miao. Calculation of electric field intensity of UHV AC transmission lines and corona effect study[D]. Xi'an: Xi'an University of Science and Technology, 2017. [18] 赵光锋, 李欣唐, 聂钢, 等. 基于电晕损耗计算的特高压交流同塔双回输电线路损耗特性[J]. 科学技术与工程, 2018, 18(30): 177–182 ZHAO Guangfeng, LI Xintang, NIE Gang, et al. Loss characteristics of ultra high voltage alternating current dual circuit transmission line based on corona loss calculation[J]. Science Technology and Engineering, 2018, 18(30): 177–182 [19] KOLEV V G, SULAKOV S I. The weather impact on the overhead line losses[C]//2017 15 th International Conference on Electrical Machines, Drives and Power Systems (ELMA). Sofia, Bulgaria. IEEE, 2017: 119–123. [20] 李伟, 王冰, 陈献慧, 等. 基于气象因子权重相似日的短期光伏功率预测[J]. 广东电力, 2018, 31(4): 59–64 LI Wei, WANG Bing, CHEN Xianhui, et al. Prediction on short-term photovoltaic power based on similar day with meteorological factor weight[J]. Guangdong Electric Power, 2018, 31(4): 59–64 [21] 张智晟, 于道林. 考虑需求响应综合影响因素的RBF-NN短期负荷预测模型[J]. 中国电机工程学报, 2018, 38(6): 1631–1638,1899 ZHANG Zhisheng, YU Daolin. RBF-NN based short-term load forecasting model considering comprehensive factors affecting demand response[J]. Proceedings of the CSEE, 2018, 38(6): 1631–1638,1899 [22] 李晓瑜, 俞丽颖, 雷航, 等. 一种K-means改进算法的并行化实现与应用[J]. 电子科技大学学报, 2017, 46(1): 61–68 LI Xiaoyu, YU Liying, LEI Hang, et al. The parallel implementation and application of an improved K-means algorithm[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(1): 61–68 [23] 谭爱国, 吴颖颖, 王传启, 等. 基于保障低压穿越能力的风电机组撬棒自适应投切策略研究[J]. 电力系统保护与控制, 2021, 49(18): 98–109 TAN Aiguo, WU Yingying, WANG Chuanqi, et al. Adaptive switching strategy for a wind turbine crowbar based on the guarantee of low voltage ride-through capability[J]. Power System Protection and Control, 2021, 49(18): 98–109 [24] 田书, 赵哲林, 杜少通. 基于改进多目标差分进化算法的节能优化调度[J]. 武汉大学学报(工学版), 2019, 52(12): 1091–1096,1105 TIAN Shu, ZHAO Zhelin, DU Shaotong. Energy-saving optimal scheduling based on improved multiobjective differential evolution algorithm[J]. Engineering Journal of Wuhan University, 2019, 52(12): 1091–1096,1105 [25] 文福拴, 韩祯祥. 基于分群算法和人工神经元网络的配电网线损计算[J]. 中国电机工程学报, 1993, 13(3): 41–51 WEN Fushuan, HAN Zhenxiang. The calculation of energy losses in distribution systems based upon a clustering algorithm and an artificial neural network model[J]. Proceedings of the CSEE, 1993, 13(3): 41–51
|