中国电力 ›› 2020, Vol. 53 ›› Issue (8): 50-59.DOI: 10.11930/j.issn.1004-9649.201907123

• 综合能源配用电关键技术专栏 • 上一篇    下一篇

考虑风电和负荷不确定冷热电联供微网日前经济调度

王长浩, 刘洋, 许立雄   

  1. 四川大学 电气工程学院,四川 成都 610065
  • 收稿日期:2019-07-15 修回日期:2019-10-21 发布日期:2020-08-05
  • 作者简介:王长浩(1993-),男,硕士研究生,从事能源互联网经济运行研究,E-mail:1627783530@qq.com;刘洋(1982-),男,博士,副教授,从事能源互联网经济运行、电力数据精细化分析、新能源及储能优化配置研究,E-mail:yang.liu@scu.edu.cn;许立雄(1982-),男,通信作者,博士,讲师,从事电力系统稳定与控制研究,E-mail:xulixiong@scu.edu.cn
  • 基金资助:
    四川省科技厅重点研发计划资助项目(2019YFG0152)

Day-Ahead Economic Dispatch for a Combined Cooling, Heat and Power Microgrid System Considering Wind Power and Load Uncertainty

WANG Changhao, LIU Yang, XU Lixiong   

  1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2019-07-15 Revised:2019-10-21 Published:2020-08-05
  • Supported by:
    This work is supported by Key Research and Development Projects of SCST (No.2019YFG0152)

摘要: 以含多种分布式电源的冷热电联供(combined cooling heating and power, CCHP)微网为研究对象,考虑风电出力和冷热电负荷不确定对微网运行的影响,区分源荷不确定各自的特点,建立考虑风电和负荷不确定的CCHP微网两阶段鲁棒随机调度模型。虽然风电预测精度较低,但其波动范围易于测量,可以使用鲁棒优化方法处理风电不确定;负荷预测精度较高且有较强波动规律,使用随机优化方法处理负荷不确定。首先通过随机抽样形成多个负荷场景并削减,得到多个典型冷热电负荷场景;然后以最小化各场景的调度成本加权平均值为决策目标制定日前调度方案,该方案使用两阶段鲁棒优化方法求解。考虑实际生产中可能出现的弃风现象,为增加风电消纳引入弃风惩罚成本。算例仿真结果证明了所提调度方法的合理性与经济性。

关键词: 冷热电联供, 风电消纳, 源荷不确定, 经济调度

Abstract: Considering the influence of uncertainties of wind power outputs and load on the operation of microgrid, a two-stage robust stochastic scheduling model is established for CCHP microgrid with multi-type distributed generations after distinguishing the characteristics of uncertain sources and loads. Although the current accuracy of wind power prediction is low, its fluctuation range is easy to measure, so a robust optimization method is applied; the load forecasting accuracy is high and has certain regularity, and then a stochastic optimization method is applied. Firstly, multiple load scenarios are formed by random sampling, then several typical load scenarios are obtained by reducing them. Next a day-ahead scheduling scheme is formulated with the goal of minimizing the weighted average of the scheduling cost of each scenario, in which a two-stage robust optimization method is used to solve the scheme. Considering the phenomenon of wind abandonment in actual production, penalty cost is introduced to increase wind power absorption. Simulation results show the rationality and economy of the proposed scheduling method.

Key words: CCHP, wind power accommodation, uncertain sources and loads, economic dispatch