[1] 李益民, 杨百勋, 史志刚, 等. 汽轮机转子事故案例及原因分析[J]. 汽轮机技术, 2007, 49(1):66-69. LI Yimin, YANG Baixun, SHI Zhigang, et al. Accidants cases and reasons analysis of turbine rotors[J]. Turbine Technology, 2007, 49(1):66-69. [2] 高澤孝一, 三木一宏. Development of high-and intermediate-pressure steam turbine rotors for efficient fossil power generation technology[J]. 日本製鋼所技報, 2014, 65:1-8. [3] ZEILER G, BAUER R, PUTSCHOEGL A. Experiences in manufacturing of forgings for power generation application[J]. Metallurgia Italiana, 2010, 32(6):33-40. [4] MISHNEV R, DUDOVA N, KAIBYSHEV R. Low cycle fatigue behavior of a 10% Cr martensitic steel at 600℃[J]. Transactions of the Iron & Steel Institute of Japan, 2015, 55(11):2469-2476. [5] KERN T U, STAUBLI M, SSCARLIN B. The European efforts in materials for 650℃ USC power plants-COST 522[J]. Transactions of the Iron & Steel Institute of Japan, 2002, 42(12):1515-1519. [6] SAKURAYA K, OKADA H, ABE F. BN type inclusions formed in high Cr ferritic heat resistan steel[J]. Energy Materials, 2009, 1(3):158-166. [7] LIN Fusheng, CHENG Shichang, XIE Xishan. The development of electric power and high temperature materials application in China-an overview[C]//International Conference on Advances in Materials Technology for Fossil Power Plant. Julich, 2008:46–58. [8] ABE F, KERN T U, VISWANATHAN R. Creep-resistant steels[M]. Florida:CRC Press, 2006:60–61. [9] 田晓, 秦承鹏, 徐慧, 等. 国产Super304H钢高温持久后微观组织与性能[J]. 中国电力, 2015, 48(9):49-55. TIAN Xiao, QIN Chengpeng, XU Hui, et al. Properties and microstructure evolution of domestic super304H steel during high temperature creep rupture testing[J]. Electric Power, 2015, 48(9):49-55. [10] 王栓柱. 金属疲劳[M]. 福州:福建科学技术出版社, 1986:91–105. [11] 王学, 李夕强, 杨超, 等. 超超临界塔式炉T23水冷壁早期失效分析[J]. 中国电力, 2014, 47(12):21-27. WANG Xue, LI Xiqiang, YANG Chao, et al. Analysis on early stage failure of welded T23 steel waterwall in USC tower boilers[J]. Electric Power, 2014, 47(12):21-27. [12] HALD J. Metallography and alloy design in the COST536 action[C]//Proceedings of the 8th Liège Conference:Materials for Advanced Power Engineering. Liège, 2006:917–930. [13] WANG Xiaowei, GONG Jianming, ZHAO Yanping, et al. Characterization of low cycle fatigue performance of new ferritic P92 steel at high temperature:effect of strain amplitude[J]. Steel Research International, 2015, 86(9):1046-1055. [14] 姜锡山, 赵晗. 钢铁显微断口速查手册[M]. 北京:机械工业出版社, 2010:84–104. [15] 钟群鹏, 赵子华. 断口学[M]. 北京:高等教育出版社, 2006:270–290. [16] ZHANG Zhen, HU Zhengfei, SCHMAUDER S, et al. Low-cycle fatigue properties of P92 ferritic-martensitic steel at elevated temperature[J]. Journal of Materials Engineering and Performance, 2016, 25(4):1650-1662. [17] GOLAŃSKI G, MROZIŃSKI S. Low cycle fatigue and cyclic softening behaviour of martensitic cast steel[J]. Engineering Failure Analysis, 2013, 35:692-702. [18] BERGER C, SCHWIENHEER M, SCHOLZ A. Creep and creep fatigue properties of turbine steels for application temperature up to 625℃[C]//Proceedings of the 8th Liège Conference:Materials for Advanced Power Engineering. 2006:1137–1146. [19] 毛雪平. 30Cr2MoV转子钢的低周疲劳特性实验研究[D]. 北京:华北电力大学, 1999. [20] ABE F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels[J]. Procedia Engineering, 2011, 10:94-99. |