中国电力 ›› 2020, Vol. 53 ›› Issue (10): 42-49.DOI: 10.11930/j.issn.1004-9649.202005105

• 国家“十三五”智能电网重大专项专栏:(一)电工磁性材料及应用技术专栏 • 上一篇    下一篇

Mn对FeCuSiBNb纳米晶合金的高频磁特性和微观结构的影响

张博峻1, 肖恢芸1,2, 贺爱娜1,2, 黎嘉威1,2, 董亚强1,2   

  1. 1. 中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201;
    2. 中国科学院大学,北京 100049
  • 收稿日期:2020-05-14 修回日期:2020-09-11 发布日期:2020-10-05
  • 作者简介:张博峻(1994—),男,本科,科研助理,从事非晶纳米晶软磁材料研究,E-mail:zhangbojun@nimte.ac.cn;贺爱娜(1983—),女,博士研究生,通信作者,高级工程师,从事非晶纳米晶软磁材料及应用技术研究,E-mail:hean@nimte.ac.cnE-mail:;董亚强(1985—),男,博士,高级工程师,从事非晶纳米晶软磁复合材料的制备及应用研究,E-mail:dongyq@nimte.ac.cn
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0903902);国家自然科学基金资助项目(51801224,51771083);浙江省自然科学基金资助项目(LQ18E010006);宁波市“科技创新2025”重大专项(2018B10084)。

Effect of Mn on High Frequency Magnetic Properties and Microstructure of FeCuSiBNb Nanocrystalline Alloys

ZHANG Bojun1, XIAO Huiyun1,2, HE Aina1,2, LI Jiawei1,2, DONG Yaqiang1,2   

  1. 1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-05-14 Revised:2020-09-11 Published:2020-10-05
  • Supported by:
    This work is supported by National Key Research and Development Program of China (No.2017YFB0903902), National Natural Science Foundation of China (No.51801224, No.51771083), Zhejiang Provincial Natural Science Foundation (No.LQ18E010006), Ningbo Major Special Projects of the Plan "Science and Technology Innovation 2025" (No.2018B10084)

摘要: 通过差示扫描量热仪(DSC)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、磁光克尔显微镜(MOKE)、直流B-H仪和阻抗分析仪等手段研究了Mn元素对FeCuSiBNb合金的热稳定性、高频磁性能、微观结构和磁畴的影响。结果表明:Mn元素对合金的第一与第二晶化温度区间和矫顽力的影响非常小,但可提高合金的高频磁导率和适用退火温度区间。与无Mn合金相比,Mn掺杂合金在10 kHz下磁导率可提高36.5%,且可抑制Fe3B相的析出。这种良好的高频特性可归因于Mn元素的掺杂降低了纳米晶合金的平均晶粒尺寸,改善了磁畴结构的均匀度,从而降低了钉扎场。

关键词: 纳米晶合金, 磁导率, 磁畴结构, 微观结构, 热稳定性

Abstract: The effects of Mn element on the thermal stability, high frequency magnetic permeability, microstructure and magnetic domain of FeCuSiBNb alloys were studied utilizing DSC, XRD, TEM, MOKE, DC B-H loop tracer and impedance analyzer. With the addition of a small amount of Mn, the temperature interval between the first and second crystallization temperatures and the coercivity of the alloys remain almost constant, but the high frequency permeability and the interval of annealing temperature improve significantly. Compared with Mn-free alloys, the permeability of Mn-doped alloys at 10 kHz is increased by 36.5%, and the precipitation of Fe3B phase is suppressed. This good properties in the Mn-doped alloys can be attributed to the fact that Mn doping reduces the mean grain size, and thus it improves the uniformity of the magnetic domains, which decreases the pinning field of the nanocrystalline alloys.

Key words: nanocrystalline alloys, permeability, magnetic domain structure, microstructure, thermal stability