[1] YOSHIZAWA Y, OGUMA S, YAMAUCHI K. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64(10): 6044-6046. [2] YOSHIZAWA Y. Magnetic properties and applications of nanostructured soft magnetic materials[J]. Scripta Materialia, 2001, 44(44): 1321-1325. [3] MARIN P, HERNANDO A. Applications of amorphous and nanocrystalline magnetic materials[J]. Journal of Magnetism and Magnetic Materials, 2000, 215: 729-734. [4] 乔峰, 何英发, 翁汉琍, 等. 变压器直流偏磁对无功功率影响的仿真分析[J]. 电力科学与技术学报, 2016, 31(4): 102-108 QIAO Feng, HE Yingfa, WENG Hanli, et al. Simulation analysis on the effection of transformers DC magnetic biasing to reactive power consumption[J]. JOurnal of Electric Power Science and Technology, 2016, 31(4): 102-108 [5] OHTA M, YOSHIZAWA Y. Improvement of soft magnetic properties in (Fe0.85B0.15)100- xCu x melt-spun alloys[J]. Materials Transactions, 2007, 48(9): 2378-2380. [6] TAI Z Z, HUANG B Y, LIU W S. Large electrical resistivity and high saturation magnetization nanocrystalline Fe86B13Cu1 alloy prepared by hot isothermal pressing[J]. Materials Letters, 2010, 64(6): 733-735. [7] OHTA M, YOSHIZAWA Y. Magnetic properties of high-Bs Fe-Cu-Si-B nanocrystalline soft magnetic alloys[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(20): e750-e753. [8] MAKINO A, MEN H, KUBOTA T, et al. FeSiBPCu Nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing hetero-amorphous phase[J]. Materials Transactions, 2009, 50(1): 204-209. [9] LIU T, LI F C, WANG A D, et al. High performance Fe-based nanocrystalline alloys with excellent thermal stability[J]. Journal of Alloys and Compounds, 2019, 776: 606-613. [10] ZANG B, PARSONS R, ONODERA K, et al. Effect of heating rate during primary crystallization on soft magnetic properties of melt-spun Fe-B alloys[J]. Scripta Materialia, 2017, 132: 68-72. [11] WU L C, LI Y H, YUBUTA K, et al. Optimization of the structure and soft magnetic properties of a Fe87B13 nanocrystalline alloy by additions of Cu and Nb[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166001. [12] JIA X J, LI Y H, XIE G Q, et al. Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy[J]. Journal of Non-Crystalline Solids, 2018, 481: 590-593. [13] HEIL T, WAHL K J, LEWIS A C, et al. Nanocrystalline soft magnetic ribbons with high relative strain at fracture[J]. Applied Physics Letters, 2007, 90(21): 212-508. [14] JI L, ZHENG Z G, QIU Z G, et al. Effect of V addition on the performance of Fe73.5Cu1B13Si9.5Nb3- xV x soft magnetic alloys[J]. Journal of Alloys and Compounds, 2018, 766: 391-397. [15] TURČANOVÁ J, MARCIN J, KOVÁČ J, et al. Magnetic and mechanical properties of nanocrystalline Fe-Ni-Nb-B alloys[J]. Journal of Physics: Conference Series, 2009, 144: 012065. [16] JIA Xingjie, LI Yanhui, WU Licheng, et al. A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys[J]. Journal of Alloys and Compounds, 2020, 822: 152-784. [17] ALLIA P, BARICCO M, TIBERTO P, et al. Kinetics of the amorphous-to-nanocrystalline transformation in Fe73.5Cu1Nb3Si13.5B9[J]. Journal of Applied Physics, 1993, 74(5): 3137-3143. [18] LUBORSKY F E, WALTER J L. Stability of amorphous metallic alloys[J]. Journal of Applied Physics, 1976, 47(8): 3648-3650. [19] LI Y H, JIA X J, XU Y Q, et al. Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations[J]. Journal of Alloys and Compounds, 2017, 722: 859-863. [20] HERZER G. Modern soft magnets: amorphous and nanocrystalline materials[J]. Acta Materialia, 2013, 61(3): 718-734. [21] OHTA M, YOSHIZAWA Y. High Bs nanocrystalline Fe84- x- yCu xNb ySi4B12 alloys (x = 0.0-1.4, y = 0.0-2.5)[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2220-2224. [22] KISSINGER H. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. [23] SENKOV O N, MIRACLE D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys[J]. Materials Research Bulletin, 2001, 36(12): 2183-2198. [24] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [25] WANG W H. Roles of minor additions in formation and properties of bulk metallic glasses[J]. Progress in Materials Science, 2007, 52(4): 540-596. [26] MINNERT C, KUHNT M, BRUNS S, et al. Study on the embrittlement of flash annealed Fe85.2B9.5P4Cu0.8Si0.5 metallic glass ribbons[J]. Materials & Design, 2018, 156: 252-261. [27] KUMAR G, OHNUMA M, FURUBAYASHI T, et al. Thermal embrittlement of Fe-based amorphous ribbons[J]. Journal of Non-Crystalline Solids, 2008, 354(10-11): 882-888. [28] 甘阳, 周本濂. FeMoSiB纳米晶薄带的裂纹扩展阻力和结构的关系[J]. 金属学报, 2001, 34(4): 391-394 GAN Yang, ZHOU Benlian. Study on the microstructure-fracture resistance relationship of FeMoSiB nanocrystalline ribbon[J]. Acta Metallurgica Sinica, 2001, 34(4): 391-394 [29] WANG W H. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids[J]. Journal of Applied Physics, 2011, 110(5): 053-521. [30] YANG F, YANG W. Crack growth versus blunting in nanocrystalline metals with extremely small grain size[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(2): 305-324. [31] SKORVANEK I, SVEC P, GRENECHE J M, et al. Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy[J]. Journal of Physics-Condensed Matter, 2002, 14(18): 4717-4736. [32] DONALD I W, DAVIES H A. The influence of transition-metal substitutions on the formation, stability and hardness of some Fe- and Ni-based metallic glasses[J]. Philosophical Magazine A, 1980, 42(3): 277-293.
|