[1] 曾德勇. 国内脱硫-烟塔合一工程设计[J]. 电力建设, 2007, 28(5): 57-60.
ZENG Deyong. Engineering design of desulfurizing and NDCT with flue gas injection in China[J]. Electric Power Construction, 2007, 28(5): 57-60.
[2] 曾德勇, 何育东. 国内烟塔合一工程初步设计思路[J]. 热力发电, 2005, 34(9): 1-4, 14.
ZENG Deyong, HE Yudong. Train of thought for preliminary design of chimney cooling tower integrated projects in our country[J]. Thermal Power Generation, 2005, 34(9): 1-4, 14.
[3] 方小文, 刘贵喜, 孙立德. “三塔合一”燃煤发电机组环保设施优化设计[J]. 内蒙古电力技术, 2015, 33(2): 71-74, 79.
FANG Xiaowen, LIU Guixi, SUN Lide. Optimization design of environmental protection facilities on three towers in one coal-fired units[J]. Inner Mongolia Electric Power, 2015, 33(2): 71-74, 79.
[4] 中国电力企业联合会. 中国电力减排研究[R]. 2014: 1-2.
[5] 环境保护部, 国家质量监督检验检疫总局. 火电厂大气污染物排放标准: GB 13223—2011[S]. 2011
[6] 李帅英, 武宝会, 牛国平, 等. 600MW燃煤机组大气污染物超低排放技术应用[J]. 热力发电, 2016, 45(12): 25-29.
LI Shuaiying, WU Baohui, NIU Guoping, et al. Application of ultra-low emission technology in a 600MW coa-fired unit[J]. Thermal Power Generation, 2016, 45(12): 25-29.
[7] 姚明宇, 聂建平, 张立欣, 等. 燃煤电站锅炉烟气污染物一体化协同治理技术[J]. 热力发电, 2016, 45(3): 8-12.
YAO Mingyu, NIE Jianping, ZHANG Lixin, et al. Integrative flue-gas pollutants removal technology for coal-fired utility boilers[J]. Thermal Power Generation, 2016, 45(3): 8-12.
[8] 朱法华, 王临清. 煤电超低排放的技术经济与环境效益分析[J]. 环境保护, 2014, 42(21): 28-33.
ZHU Fahua, WANG Linqing. Analysis on technology-economy and environment benefit of ultra-low emission from coal-fired power units[J]. Environmental Protection, 2014, 42(21): 28-33.
[9] 张东辉, 庄烨, 朱润儒, 等. 燃煤烟气污染物超低排放技术及经济分析[J]. 电力建设, 2015, 36(5): 125-130.
ZHANG Donghui, ZHUANG Ye, ZHU Runru, et al. Ultra-Low Air Pollutant Control Technologies for Coal-fired Flue Gas and Its Economic Analysis[J]. Electric Power Construction, 2015, 36(5): 125-130.
[10] 周二奇, 陈龙, 侯艳峰. 660MW机组四合一式空冷塔变工况运行的数值模拟[J]. 电站辅机, 2016, 37(2): 4-8.
ZHOU Erqi, CHEN Long, HOU Yanfeng. Numerical Research on Changing Operation of 660MW unit of Four in One Type Indirect Air Cooled Tower[J]. Power Station Auxiliary Equipment, 2016, 37(2): 4-8.
[11] 周二奇, 陈龙, 郝颖, 等. 四塔合一式间接空冷塔传热性能的数值研究[J]. 电力科学与工程, 2016, 32(1): 12-16.
ZHOU Erqi, CHEN Long, HAO Ying, et al. Numerical research on heat transfer performance of the four in one type indirect air cooled tower [J]. Electric Power Science and Engineering, 2016, 32(1): 12-16.
[12] 杜乐, 黄建国, 殷文香. 一种提高石灰石-石膏法脱硫效率的方法—托盘塔[J]. 环境与发展, 2014, 26(3): 196-198.
DU Le, HUANG Jianguo, YIN Wenxiang, et al. A method for improving limestone-gypsum desulfurization efficiency—tary tower[J]. Environment and Development, 2014, 26(3): 196-198.
[13] 张晓鲁. 燃煤电站烟气污染物深度脱除技术的分析[J]. 中国工程科学, 2014, 16(10): 47-51.
ZHANG Xiaolu. Analysis of flue gas pollutants deep-removal technology for coal-fired power plant[J]. Engineering Science, 2014, 16(10): 47-51.
[14] 赵海宝, 郦建国, 何毓忠, 等. 低低温电除尘关键技术研究与应用[J]. 中国电力, 2014, 47(10): 117-121.
ZHAO Haibao, LI Jianguo, HE Yuzhong, et al. Research and application on low-low temperature electrostatic precipitator technology [J]. Electric Power, 2014, 47(10): 117-121.
[15] 刘媛, 闫骏, 井鹏, 等. 湿式静电除尘技术研究及应用[J]. 环境科学与技术, 2014, 37(6): 83-88.
LIU Yuan, YAN Jun, JING Peng, et al. Research and application of wet electrostatic precipitator[J]. Environmental Science&Technology, 2014, 37(6): 83-88.
[16] 成新兴, 武宝会, 牛国平, 等. 基于SAP2000 的脱硫吸收塔结构有限元分析[J]. 工业建筑, 2015(S): 727-730.
CHENG Xinxing, WU Baohui, NIU Guoping, et al. Finite element analysis of desulfurization absorption tower structure based on SAP2000[J]. Industrial Construction, 2015(S): 727-730. |