[1] 张强. 燃煤电站SCR烟气脱硝技术及工程应用[M]. 北京:化学工业出版社,2007.
[2] NAKAJIMA F, HAMADA I. The state-of-the-art technology of NOx control[J]. Catalysis Today, 1996, 29(1-4):109-115.
[3] 陈进生. 火电厂烟气脱硝技术——选择性催化还原法[M]. 北京:中国电力出版社,2008:51-54.
[4] FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001, 222(1-2):221-236.
[5] 冯前伟,张杨,王丰吉,等. 现役燃煤机组SCR烟气脱硝装置运行现状分析[J]. 中国电力,2017,50(4):157-161. FENG Qianwei, ZHANG Yang, WANG Fengji. et al. Analysis on operating status of SCR facilities in active coal-fired units[J].Electric Power, 2017, 50(4):157-161.
[6] 鲁佳易,卢啸风,刘汉周,等. SCR法烟气脱硝催化剂及其应用特性的探讨[J]. 电站系统工程,2008,24(1):5-8. LU Jiayi, LU Xiaofeng, LIU Hanzhou, et al. The recent application of de-NOx SCR catalysts[J]. Power System Engineering, 2008, 24(1):5-8.
[7] 孙艺心,韩强. SCR脱硝系统催化剂防磨措施的探讨[J]. 锅炉制造,2013(4):39-40. SUN Yixin, HAN Qiang. Discussion of SCR de-NOx catalyst abrasion proof measures[J]. Boiler Manufacturing, 2013(4):39-40.
[8] 何文深,陈建军,郑佐东. SCR蜂窝式脱硝催化剂抗磨损性能研究[J]. 电力科技与环保,2011,27(5):10-12. HE Wenshen, CHEN Jianjun, ZHENG Zuodong. Study of abrasion performance of SCR honeycomb catalysts[J]. Electric Power Environmental Protection, 2011, 27(5):10-12.
[9] 李俊华,杨恂,常化振. 烟气催化脱硝关键技术研发及应用[M]. 北京:科学出版社,2015.
[10] 杨泽伦. SCR烟气脱硝工程设计原则和关键设计技术[J]. 中国电力,2015,48(4):27-31. YANG Zelun. Principles and key techniques for SCR De-NOx engineering design[J]. Electric Power, 2015, 48(4):27-31.
[11] 肖雨亭,徐莉,贾曼,等. 蜂窝式脱硝催化剂在烟气中磨损行为的模拟研究[J]. 中国电力,2012,45,(12):96-98. XIAO Yuting, XU Li, JIA Man, et al. Research on abrasion simulation of de-NOx honeycomb catalysts in flue gas[J]. Electric Power, 2012, 45(12):96-98.
[12] 李锋,於承志,张朋,等. 高尘烟气脱硝催化剂耐磨性能研究[J]. 热力发电,2010,39(12):73-75. LI Feng, YU Chengzhi, ZHANG Peng, et al. Study on abrasieveness of catalyst used for denitrification in flue gas with high dust content[J]. Thermal Power Generation, 2010, 39(12):73-75.
[13] 邓静杰,韦红旗,仲亚飞. 670 MW机组SCR脱硝催化剂磨损的研究分析[J]. 电站系统工程,2015,31(4):58-60. DENG Jingjie, WEI Hongqi, ZHONG Yafei. Analysis on abrasion of catalyst in SCR denitrification device of 670 MW power unit[J]. Power System Engineering, 2015, 31(4):58-60.
[14] WILHITE DAVID C. The use of computational fluid dynamics in selective reduction system ductwork design[C]//Proceedings of the ASME Fluids Engineering Division, New York, 1998:247-248.
[15] XU Yuanyuan, ZHANG Yan, LIU Fengna, et al. CFD analysis on the catalyst layer breakage failure of an SCR de-NOx system for a 350 MW coal-fired power plant[J]. Computers & Chemical Engineering, 2014, 69(3):119-127. |