[1] 李泓泽,郎斌. 全生命周期造价管理在电力工程造价管理中的应用研究[J]. 华北电力大学学报,2008(l):7-11. LI Hongze, LANG Bin. The application of the whole life cycle engineering cost management on the electricity engineering field[J]. Journal of North China Electric Power University, 2008(l): 7-11. [2] 丘文千. 对变电站建设规模的思考与探讨[J]. 浙江电力,2008(5):5-8. QIU Wenqian. Thoughts and study on the substation capacity scale[J]. Zhejiang Electric Power, 2008(5): 5-8. [3] 徐翀.全寿命周期成本管理在电力设备管理中的应用探讨[J].中国电力,2010,43(3):72-74. XU Chong. Research of the apphcatlon in power equipments LCC management [J]. Electric Power, 2010, 43(3): 72-74. [4] 韩豫,胡继军,查申森,等. 变电站全寿命周期设计的理论及应用[J]. 中国电力,2011,44(3):23-26. HAN Yu, HU Jijun, ZHA Shensen, et al. Key theory and application of substation life cycle design[J]. Electric Power, 2011, 44(3): 23-26. [5] 刘田.基于效能-全寿命周期成本的变电站经济性评价[D]. 杭州:浙江大学,2013. [6] 路石俊. 内蒙古500 kV变电站全生命周期成本管理研究[D].北京:华北电力大学,2010. [7] 蔡毅,邢岩,胡丹.敏感性分析综述[J]. 北京师范大学学报,2008,44(1):9-16. CAI Yi, XING Yan, HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University, 2008, 44(1): 9-16. [8] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 2000. [9] 董明,孟源源,徐长响,等. 基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J]. 中国电机工程学报,2003,23(7): 88-92. DONG Ming, MENG Yuanyuan, XU Changxiang, et al. Fault diagnosis model for power transformer based on support vector machine and dissolved gas analysis[J]. Proceedings of the CSEE, 2003, 23(7): 88-92. [10] 牛东晓,刘达,陈广娟,等. 基于遗传优化的支持向量机小时负荷滚动预测[J]. 电工技术学报,2007,22(6):148-153. NIU Dongxiao, LIU Da, CHEN Guangjuan, et al. Support vector machine models optimized by genetic algorithm for hourly load rolling forecasting[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 148-153. [11] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. ZHANG Xuegong. Introduction to statistical learning theory and support vector machines [J]. Acta Automatica Sinica, 2000, 26(1):32-42. [12] KEERTHI S S, LIN C J. Asymptotic behaviors of supportvector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689. [13] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. [14] 王群京,鲍晓华,倪有源,等. 基于支持向量机和遗传算法的爪极发电机建模及参数优化[J]. 电工技术学报,2006, 21(4):57-61. WANG Qunjing, BAO Xiaohua, NI Youyuan, et al. Modeling and parameter optimization of the claw-pole alternator based on support vector machines and genetic algorithms[J]. Transactions of China Electrotechnical Society, …, 21(4): 57-61. [15] 王春林,周昊,李国能,等. 基于支持向量机与遗传算法的灰熔点预测[J]. 中国电机工程学报,2007,27(8):11-15. WANG Chunlin, ZHOU Hao, LI Guoneng, et al. Combining support vector machine and genetic algorithm to predict ash fusion temperature [J]. Proceedings of the CSEE, 2007, 27(8): 11-15. [16] 徐玉琴,任正,詹翔灵,等. 电力变压器全寿命周期成本建模及其综合敏感性分析[J]. 华北电力大学学报:自然科学版,2014,41(6):80-87. XU Yuqin, REN Zheng, ZHAN Xiangling, et al. Life cycle cost model and comprehensive sensitivity analysis of power transformer[J]. Journal of North China Electric Power University: Natural Science Edition, 2014, 41(6): 80-87. [17] 彭路. 支持向量机分类算法研究与应用[D]. 长沙:湖南大学,2007. [18] 董春曦,饶鲜,杨绍全,等. 支持向量机参数选择方法研究[J]. 系统工程与电子技术,2004,26(8):1117-1120. DONG Chunxi, RAO Xian, YANG Shaoquan, et al. Method for selecting the parameters of support vector machines[J]. Systems Engineering and Electronis, 2004, 26(8): 1117-1120. [19] 祝晓燕,张金会,付士鹏,等. 基于改进PSO的SVM参数优化及在网速预测中的应用[J]. 中国电力,2013,46(11):105-108. ZHU Xiaoyan, ZHANG Jinhui, FU shipeng, et al. Parameter optimization of SVM based on improved PSO and its application in wind speed predictions[J]. Electric Power, 2013, 46(11): 105-108. |