中国电力 ›› 2015, Vol. 48 ›› Issue (11): 142-148.DOI: 10.11930.2015.11.142

• 技术经济 • 上一篇    下一篇

基于遗传优化最小二乘支持向量机的变电站全寿命周期成本预测模型

乔国华1,郭路遥1,吴一敌1,李晶1,贾朝阳1,郝锋2,詹翔灵2,王亚运2   

  1. 1. 国网河北省电力公司,河北 石家庄 050000;
    2. 华北电力大学,河北 保定 071003
  • 收稿日期:2015-08-25 出版日期:2015-11-18 发布日期:2015-11-18
  • 作者简介:乔国华(1979—),男,河北衡水人,硕士,高级工程师,从事物资管理工作。E-mail: qgh@he.sgcc.com.cn

Substation Life Cycle Cost Prediction Model of the Least Squares Support Vector Machine Optimized by Genetic Algorithm

QIAO Guohua1, GUO Luyao1, Wu Yidi1, LI Jing1, JIA Zhaoyang1, HAO Feng2, ZHAN Xiangling2, WANG Yayun2   

  1. 1. State Grid Hebei Electric Power Company, Shijiazhuang 050000, China;
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2015-08-25 Online:2015-11-18 Published:2015-11-18

摘要: 变电站设备多、投入资金大,建立合理的变电站LCC预测模型,是提高电网资产管理效率的重要手段,其中如何保证算法收敛能力和模型预测精度是目前的研究难点。建立了基于GA优化最小二乘支持向量机的变电站LCC预测模型,选取变电站全寿命周期各阶段的一些具有代表性的指标作为预测模型输入向量,变电站LCC总成本作为输出向量。通过算例,对比了传统LS-SVM预测模型、BP神经网络预测模型和GA优化LS-SVM预测模型的预测结果及性能指标,验证了GA优化LS-SVM预测模型性能的优越性,以便在新建变电站时,实现快速、高效的变电站LCC的预测,有助于实现电网规划时变电站的经济技术评估。

关键词: 变电站, 全寿命周期成本, 遗传算法, 支持向量机

Abstract: Because of large number of equipment and investment during substation construction, building a reasonable life cycle cost (LCC) prediction model is an important means of improving grid assets management efficiency. The methods to ensure convergence capability and improve prediction accuracy are difficulties in current study. A substation LCC prediction model based on least squares support vector machine optimized by GA is proposed. The method use some representative indexes as predictive model input vectors and the total substation LLC cost as the output vector. The results from traditional LS-SVM prediction model, BP neural network prediction model and GA optimized LS-SVM prediction model are compared on selected examples. The comparison verifies superior performance of proposed model. The proposed method can be used during new substation planning and construction to predict station LLC quickly and efficiently.

Key words: substation, life cycle cost, genetic algorithm, support vector machine

中图分类号: