Electric Power ›› 2025, Vol. 58 ›› Issue (9): 175-182.DOI: 10.11930/j.issn.1004-9649.202410052
• New-Type Power Grid • Previous Articles Next Articles
					
													ZHANG Xing1(
), CHAI Yufeng1(
), HAN Xinyang1(
), WANG Xubin1, YIN Jianguang2, ZHANG Xinsheng1
												  
						
						
						
					
				
Received:2024-10-15
															
							
															
							
															
							
																	Online:2025-09-26
															
							
							
																	Published:2025-09-28
															
							
						Supported by:ZHANG Xing, CHAI Yufeng, HAN Xinyang, WANG Xubin, YIN Jianguang, ZHANG Xinsheng. A Quantitative Calculation Method for Carbon Emission Reduction Contribution of Power Grid[J]. Electric Power, 2025, 58(9): 175-182.
| 联盟 编号  | 主体S | 情况描述 | 碳减排 量v(S)  | |||
| 1 | {其他主体} | 只建设其他主体,不改造建设电网 | α | |||
| 2 | {电网} | 只改造建设电网,不建设其他主体 | β | |||
| 3 | {其他主体,电网} | 建设其他主体,也改造建设电网 | γ | 
Table 1 Combination of alliance entities
| 联盟 编号  | 主体S | 情况描述 | 碳减排 量v(S)  | |||
| 1 | {其他主体} | 只建设其他主体,不改造建设电网 | α | |||
| 2 | {电网} | 只改造建设电网,不建设其他主体 | β | |||
| 3 | {其他主体,电网} | 建设其他主体,也改造建设电网 | γ | 
| 参数 | S={电网} | S={其他主体,电网} | ||
| v(S) | β | γ | ||
| v(S\{i}) | 0 | α | ||
| Si | 1 | 2 | ||
| n | 2 | 2 | ||
| 0.5 | 0.5 | |||
| ω网 | ||||
Table 2 The related parameters ofωgrid
| 参数 | S={电网} | S={其他主体,电网} | ||
| v(S) | β | γ | ||
| v(S\{i}) | 0 | α | ||
| Si | 1 | 2 | ||
| n | 2 | 2 | ||
| 0.5 | 0.5 | |||
| ω网 | ||||
| 参数 | S={电网} | S={其他主体,电网} | ||
| v(S) | α | γ | ||
| v(S\{i}) | 0 | β | ||
| Si | 1 | 2 | ||
| n | 2 | 2 | ||
| 0.5 | 0.5 | |||
| ω主体 | ||||
Table 3 The related parameters ofωentity
| 参数 | S={电网} | S={其他主体,电网} | ||
| v(S) | α | γ | ||
| v(S\{i}) | 0 | β | ||
| Si | 1 | 2 | ||
| n | 2 | 2 | ||
| 0.5 | 0.5 | |||
| ω主体 | ||||
| 场景 | α、γ | ω网 | ω主体 | |||
| Ⅰ | γ<α | 不适用 | ||||
| Ⅱ | γ=α | 0 | γ | |||
| Ⅲ | γ>α且α=0 | 0.5γ | 0.5γ | |||
| Ⅳ | γ>α且α≠0 | (0, 0.5γ) | (0.5γ, γ) | |||
Table 4 Carbon emission reduction scenarios and the range of ωgrid andωentity
| 场景 | α、γ | ω网 | ω主体 | |||
| Ⅰ | γ<α | 不适用 | ||||
| Ⅱ | γ=α | 0 | γ | |||
| Ⅲ | γ>α且α=0 | 0.5γ | 0.5γ | |||
| Ⅳ | γ>α且α≠0 | (0, 0.5γ) | (0.5γ, γ) | |||
| 模式 | Emg | Pmg | Pgrid | |||
| 并网 | 0.17 | 3.45 | 3.62 | |||
| 离网 | 0.12 | 3.27 | 3.39 | 
Table 5 The carbon reduction-related data of microgrids 单位:tCO2
| 模式 | Emg | Pmg | Pgrid | |||
| 并网 | 0.17 | 3.45 | 3.62 | |||
| 离网 | 0.12 | 3.27 | 3.39 | 
| 1 | 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43 (5): 1663- 1672. | 
| SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43 (5): 1663- 1672. | |
| 2 |  
											舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23 (6): 1- 14. 
																							 DOI  | 
										
|  
											Shu Yinbiao, Zhang Liying, Zhang Yunzh, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23 (6): 1- 14. 
																							 DOI  | 
										|
| 3 | 辛保安. 新型电力系统构建方法论研究[J]. 新型电力系统, 2023, (1): 1- 18. | 
| XIN Baoan. Research on the methodology of constructing new power systems[J]. New Type Power Systems, 2023, (1): 1- 18. | |
| 4 | 孙启星, 张超, 李成仁, 等. “碳达峰、碳中和” 目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56 (1): 9- 16. | 
| SUN Qixing, ZHANG Chao, LI Chengren, et al. Prediction of power system cost and price level under the goal of "carbon peak and carbon neutralization"[J]. Electric Power, 2023, 56 (1): 9- 16. | |
| 5 | 李军祥, 张三杰, 邵馨平. 考虑双侧响应与碳捕集的虚拟电厂低碳经济调度[J]. 上海理工大学学报, 2025, 47 (1): 79- 88. | 
| LI Junxiang, ZHANG Sanjie, SHAO Xinping. Low carbon economic dispatch of virtual power plants considering bilateral response and carbon capture[J]. Journal of Shanghai University of Technology, 2025, 47 (1): 79- 88. | |
| 6 | 寇汉鹏, 步天龙, 聂伟峰, 等. 考虑经济性与可靠性相协调的多能源系统碳减排优化模型[J]. 可再生能源, 2024, 42 (11): 1554- 1562. | 
| KOU Hanpeng, BU Tianlong, NIE Weifeng, et al. An optimization model of carbon emission reduction of multienergy system considering the coordination of economy and reliability[J]. Renewable Energy Resources, 2024, 42 (11): 1554- 1562. | |
| 7 | 沈明忠, 胡小夫, 沈建永, 等. 基于燃煤机组掺烧绿氨的碳减排量分析研究[J]. 综合智慧能源, 2024, 46 (10): 67- 72. | 
| SHEN Mingzhong, HU Xiaofu, SHEN Jianyong, et al. Analysis and research on carbon emission reduction from co-firing green ammonia in coal-fired power plants[J]. Integrated Intelligent Energy, 2024, 46 (10): 67- 72. | |
| 8 | 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16 (5): 632- 640. | 
| CHEN Yi, TIAN Chuan, CAO Ying, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16 (5): 632- 640. | |
| 9 | 国网能源研究院有限公司. 中国能效分析与展望报告2023[M]. 中国电力出版社: 北京, 2024. | 
| 10 | 周原冰, 张士宁, 侯方心, 等. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57 (9): 1- 9. | 
| ZHOU Yuanbing, ZHANG Shining, HOU Fangxin, et al. Analysis of carbon peaking in power sector and its impact on promoting whole-society carbon emissions reduction[J]. Electric Power, 2024, 57 (9): 1- 9. | |
| 11 | 田中华, 杨泽亮, 蔡睿贤. 电力行业对地区节能和碳排放强度下降目标贡献分析[J]. 中国电力, 2015, 48 (3): 150- 155. | 
| TIAN Zhonghua, YANG Zeliang, CAI Ruixian. Study on contribution of power industry for regional energy conservation and carbon intensity reduction goal[J]. Electric Power, 2015, 48 (3): 150- 155. | |
| 12 | 辛保安. 新型电力系统与新型能源体系[M]. 中国电力出版社: 北京, 2024, 275–276. | 
| 13 | 康重庆, 周天睿, 陈启鑫, 等. 电网低碳效益评估模型及其应用[J]. 电网技术, 2009, 33 (17): 1- 7. | 
| KANG Chongqing, ZHOU Tianrui, CHEN Qixin, et al. Assessment model on low-carbon effects of power grid and its application[J]. Power System Technology, 2009, 33 (17): 1- 7. | |
| 14 | 许小虎, 邹毅, 綦玖竑, 等. 电网对新能源并网发电的减排贡献研究[J]. 生态经济, 2015, 31 (10): 63- 65, 75. | 
| XU Xiaohu, ZOU Yi, QI Jiuhong, et al. Research of emission reduction contribution of new energy power generation from power grid[J]. Ecological Economy, 2015, 31 (10): 63- 65, 75. | |
| 15 | 王硕, 霍慧娟, 徐丹, 等. 计及特高压交流工程建设的区域碳减排测算及分摊[J]. 中国电力, 2024, 57 (7): 163- 172. | 
| wang shuo, huo huijuan, xu dan, et al. calculation and sharing of regional carbon emission reduction considering construction of ultra high voltage AC projects[J]. Electric Power, 2024, 57 (7): 163- 172. | |
| 16 | 周全, 冯冬涵, 徐长宝, 等. 负荷侧碳排放责任直接分摊方法的比较研究[J]. 电力系统自动化, 2015, 39 (17): 153- 159. | 
| ZHOU Quan, FENG Donghan, XU Changbao, et al. Methods for allocating carbon obligation in demand side: a comparative study[J]. Automation of Electric Power Systems, 2015, 39 (17): 153- 159. | |
| 17 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. | 
| CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
| 18 | 周全. 节能减排环境下电力系统碳排放责任分摊机制研究[D]. 上海: 上海交通大学, 2016. | 
| ZHOU Quan. The Study of carbon emission obligation allocation in power systems[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
| 19 | MASCHLER M, SOLAN E, ZAMIR S. Game Theory[M]. UK: Cambridge University Press 2013. | 
| 20 | 郝俊博, 闫晓宏, 裴红兰, 等. 基于改进Shapley值的台区多共享储能运行效能分配方法[J]. 储能科学与技术, 2025, 14 (4): 1507- 1518. | 
| HAO Junbo, YAN Xiaohong, PEI Honglan, et al. A method for allocating operational efficiency of multi shared energy storage in substations based on improved Shapley values[J]. Energy Storage Science and Technology, 2025, 14 (4): 1507- 1518. | |
| 21 | 刘文霞, 王丽娜, 张帅, 等. 基于合作博弈论的日前自备电厂与风电发电权交易模型[J]. 电网技术, 2022, 46 (7): 2647- 2658. | 
| LIU Wenxia, WANG Lina, ZHANG Shuai, et al. Cooperation game theory-based model for trading of power generation rights between former captive power plants and wind power[J]. Power System Technology, 2022, 46 (7): 2647- 2658. | |
| 22 | 陶良彦, 王丽, 齐晓霞, 等. 武器装备体系贡献率评估灰色Shapley值模型[J]. 中国管理科学, 2024, 32 (4): 89- 96. | 
| TAO Liangyan, WANG Li, QI Xiaoxia, et al. On grey shapley value model for evaluating the contribution rate of weapon equipment system[J]. Chinese Journal of Management Science, 2024, 32 (4): 89- 96. | |
| 23 | 张丽琴, 谢俊, 张秋艳, 等. 基于Shapley值抽样估计法的风-光-水互补发电增益分配方法[J]. 电力自动化设备, 2021, 41 (9): 126- 132. | 
| ZHANG Liqin, XIE Jun, ZHANG Qiuyan, et al. Synergistic benefit allocation method for wind-solar-hydro complementary generation with sampling-based Shapley value estimation method[J]. Electric Power Automation Equipment, 2021, 41 (9): 126- 132. | |
| 24 | 杨莘博. 新能源微网多能协同运行优化及效益分配模型研究[D]. 北京: 华北电力大学(北京), 2022. | 
| YANG Shenbo. Multi-energy cooperative operation optimization and benefit allocation model for new energy microgrid[D]. Beijing: North China Electric Power University (Beijing), 2022. | |
| 25 | 闫林芳, 范国晨, 赵杨阳, 等. 考虑碳减排需求的微电网低碳经济运行策略研究[J]. 电力需求侧管理, 2024, 26 (5): 64- 69. | 
| YAN Linfang, FAN Guochen, ZHAO Yangyang, et al. Research on low carbon economic operation strategy of microgrid considering carbon emission reduction demand[J]. Electricity Demand Side Management, 2024, 26 (5): 64- 69. | |
| 26 | JIANG QY, XUE MD, GENG GC. Energy management of microgrid in grid-connected and stand-alone modes[J]. IEEE transactions on power systems, 2013, 28 (3): 3380- 3389. | 
| 27 | 薛美东. 微网优化配置和能量管理研究[D]. 杭州: 浙江大学, 2015, 133–141. | 
| XUE Meidong. Sizing optimization and energy management of microgrid[D]. Hangzhou: Zhejiang University, 2015, 133–141. | 
| [1] | Shuo WANG, Huijuan HUO, Dan XU, Xin QIE, Cheng XIN, Weiwei LI, Jing DUAN. Calculation and Sharing of Regional Carbon Emission Reduction Considering Construction of Ultra High Voltage AC Projects [J]. Electric Power, 2024, 57(7): 163-172. | 
| [2] | JIANG Congwei, OU Qinghe, WU Zhongchao, ZHANG Jian, YANG Shu, ZHU Jianan, AI Qian. Joint Configuration and Optimization of Multi-microgrid Shared Energy Storage Based on Coalition Game [J]. Electric Power, 2022, 55(12): 11-21. | 
| [3] | GUO Zuogang, YU Lei, HU Yang, ZHOU Changcheng, LEI Jinyong, HE Shuai, LIU Nian. Research on Competition Strategy of Integrated Energy Service Provider under the Pool-based Market Mechanism [J]. Electric Power, 2019, 52(11): 28-34. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
