Electric Power ›› 2025, Vol. 58 ›› Issue (3): 162-167.DOI: 10.11930/j.issn.1004-9649.202405011
• New-Type Power Grid • Previous Articles Next Articles
Xiangguo YIN1(), Huijuan LIU1(
), Guanyu ZHANG1, Yurong MAO2, Shiyu GONG3
Received:
2024-05-07
Accepted:
2024-08-05
Online:
2025-03-23
Published:
2025-03-28
Supported by:
Xiangguo YIN, Huijuan LIU, Guanyu ZHANG, Yurong MAO, Shiyu GONG. Sampling Loop Test Check Evaluation of Secondary System based on VAE-WSVM Data Mining[J]. Electric Power, 2025, 58(3): 162-167.
采样回路误差状态 | 代号 | 样本数量 | 测试集 | 训练集 | ||||
正常 | N | 330 | 770 | |||||
计量误差 | M1 | 300 | 90 | 210 | ||||
测量误差 | M2 | 300 | 90 | 210 | ||||
保护误差 | L1 | 300 | 90 | 210 |
Table 1 The composition of each sample
采样回路误差状态 | 代号 | 样本数量 | 测试集 | 训练集 | ||||
正常 | N | 330 | 770 | |||||
计量误差 | M1 | 300 | 90 | 210 | ||||
测量误差 | M2 | 300 | 90 | 210 | ||||
保护误差 | L1 | 300 | 90 | 210 |
代号 | 训练样本构成情况 | |||||||
训练集1 | 训练集2 | 训练集3 | 训练集4 | |||||
N | 100 | 200 | 400 | 770 | ||||
M1 | 100 | 200 | 210 | 210 | ||||
M2 | 100 | 200 | 210 | 210 | ||||
L1 | 100 | 200 | 210 | 210 |
Table 2 The composition of training samples with increasing unbalance degree
代号 | 训练样本构成情况 | |||||||
训练集1 | 训练集2 | 训练集3 | 训练集4 | |||||
N | 100 | 200 | 400 | 770 | ||||
M1 | 100 | 200 | 210 | 210 | ||||
M2 | 100 | 200 | 210 | 210 | ||||
L1 | 100 | 200 | 210 | 210 |
评估方法 | 准确率/% | |||||||
训练集1 | 训练集2 | 训练集3 | 训练集4 | |||||
统计量 | 75.17 | 75.08 | 75.40 | 75.71 | ||||
简单神经网络 | 96.90 | 88.33 | 79.67 | 79.39 | ||||
支持向量机 | 83.33 | 86.92 | 82.21 | 79.29 | ||||
VAE-SVM | 92.92 | 94.33 | 96.96 | 98.57 | ||||
VAE-WSVM | 95.83 | 97.08 | 98.71 | 99.52 |
Table 3 Results of each evaluation method
评估方法 | 准确率/% | |||||||
训练集1 | 训练集2 | 训练集3 | 训练集4 | |||||
统计量 | 75.17 | 75.08 | 75.40 | 75.71 | ||||
简单神经网络 | 96.90 | 88.33 | 79.67 | 79.39 | ||||
支持向量机 | 83.33 | 86.92 | 82.21 | 79.29 | ||||
VAE-SVM | 92.92 | 94.33 | 96.96 | 98.57 | ||||
VAE-WSVM | 95.83 | 97.08 | 98.71 | 99.52 |
1 | 钟鸣, 陶军, 刘洵宇, 等. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56 (10): 171- 178. |
ZHONG Ming, TAO Jun, LIU Xunyu, et al. Smart substation optical fiber virtual and real loop mapping and fault diagnosis technology[J]. Electric Power, 2023, 56 (10): 171- 178. | |
2 | 易亚文, 赵静朴, 柳灿, 等. 基于改进ED及CM-BPNN算法的保护测量回路误差状态评估方法[J]. 中国电力, 2023, 56 (11): 143- 150. |
YI Yawen, ZHAO JingPu, LIU Can, et al. Error status evaluation method for protection measurement circuit based on improved ED and CM-BPNN algorithms[J]. Electric Power, 2023, 56 (11): 143- 150. | |
3 |
王亚飞, 张朋丰, 王讯, 等. 采用集群测控的智能变电站新型监控方案技术经济性分析[J]. 山东电力技术, 2023, 50 (4): 32- 40.
DOI |
WANG Yafei, ZHANG Pengfeng, WANG Xun, et al. Technical and economic analysis of a novel supervision system for smart substation using cluster measurement and control devices[J]. Shandong Electric Power, 2023, 50 (4): 32- 40.
DOI |
|
4 |
张洁, 卢晓雄, 陈佳, 等. 基于阻抗测量的电压互感器二次回路压降测试技术研究[J]. 广东电力, 2023, 36 (9): 51- 59.
DOI |
ZHANG Jie, LU Xiaoxiong, CHEN Jia, et al. Research on voltage transformer secondary circuit voltage drop measurement technology based on impedance measurement[J]. Guangdong Electric Power, 2023, 36 (9): 51- 59.
DOI |
|
5 | 王达, 高林, 张爱平, 等. 基于调控云数据分析的二次故障智能诊断系统设计与应用[J]. 山东电力技术, 2023, 50 (9): 73- 80. |
WANG Da, GAO Lin, ZHANG Aiping, et al. Design and application of secondary failure intelligent diagnosis system based on dispatching and control cloud data analysis[J]. Shandong Electric Power, 2023, 50 (9): 73- 80. | |
6 |
栗磊, 梁亚波, 赫嘉楠, 等. 基于差动电流相位差的和应涌流识别及其与内部故障的区分方法[J]. 电网与清洁能源, 2023, 39 (8): 64- 72.
DOI |
LI Lei, LIANG Yabo, HE Jianan, et al. A method of identifying sympathetic inrush current based on phase difference of differential current and distinguishing it from internal faults[J]. Power System and Clean Energy, 2023, 39 (8): 64- 72.
DOI |
|
7 | 赵东生, 周原, 范亚洲, 等. 输电线路在线监测设备供能技术研究综述[J]. 广东电力, 2024, 37 (7): 107- 117. |
ZHAO Dongsheng, ZHOU Yuan, FAN Yazhou, et al. Overview of energy supply technology for online monitoring equipment of transmission lines[J]. Guangdong Electric Power, 2024, 37 (7): 107- 117. | |
8 | 郑翔, 杜奇伟, 阮黎翔, 等. 基于WOA-SVM的智能变电站二次系统故障参数映射模型[J]. 浙江电力, 2024, 43 (1): 36- 44. |
ZHENG Xiang, DU Qiwei, RUAN Lixiang, et al. A WOA-based fault parameter mapping model for the secondary systems of intelligent substations[J]. Zhejiang Electric Power, 2024, 43 (1): 36- 44. | |
9 | 陈辉, 黄林滨, 李朝兵, 等. 二次再热锅炉30%负荷下燃烧优化调整研究[J]. 电力科技与环保, 2023, 39 (2): 129- 137. |
CHEN Hui, HUANG Linbin, LI Chaobing, et al. Study on combustion optimization and adjustment of secondary reheat boiler at 30%load[J]. Electric Power Technology and Environmental Protection, 2023, 39 (2): 129- 137. | |
10 | 钟鸣, 翟寅, 付晓艺. 基于线性二次型积分调节器的风电机组功率载荷协同变桨控制[J]. 内蒙古电力技术, 2023, 41 (5): 81- 87. |
ZHONG Ming, ZHAI Yin, FU Xiaoyi. LQRI-based cooperative pitch control of wind turbine power and load[J]. Inner Mongolia Electric Power, 2023, 41 (5): 81- 87. | |
11 | 褚雪汝, 陈中, 吴聪颖, 等. 基于深度学习的电气二次图纸语义识别方法[J]. 浙江电力, 2023, 42 (8): 1- 11. |
CHU Xueru, CHEN Zhong, WU Congying, et al. Small target area extraction and semantic recognition method of electrical secondary drawings based on deep learning[J]. Zhejiang Electric Power, 2023, 42 (8): 1- 11. | |
12 | 高伟, 饶俊民, 全圣鑫, 等. 不均衡小样本下多特征优化选择的生命体触电故障识别方法[J]. 电工技术学报, 2024, 39 (7): 2060- 2071. |
GAO Wei, RAO Junmin, QUAN Shengxin, et al. Biological electric-shock fault identification method based on multi-feature optimization selection under unbalanced small sample[J]. Transactions of China Electrotechnical Society, 2024, 39 (7): 2060- 2071. | |
13 | 祁虹. 基于压缩感知理论的高压断路器故障诊断研究[D]. 兰州: 兰州交通大学, 2022. |
QI Hong. Research on fault diagnosis of high voltage circuit breaker based on compressed sensing theory[D]. Lanzhou: Lanzhou Jiatong University, 2022. | |
14 | 李煜, 毕卫红, 孙建成, 等. 紫外-可见吸收光谱结合化学计量学算法的水体总有机碳浓度快速检测[J]. 光谱学与光谱分析, 2024, 44 (3): 722- 730. |
LI Yu, BI Weihong, SUN Jiancheng, et al. Rapid detection of total organic carbon concentration in water using UV-vis absorption spectra combined with chemometric algorithms[J]. Spectroscopy and Spectral Analysis, 2024, 44 (3): 722- 730. | |
15 | 李丹, 梁云嫣, 缪书唯, 等. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57 (12): 17- 29. |
LI Dan, LIANG Yunyan, MIAO Shuwei, et al. Daily power scenario generation method for multiple wind farms based on gaussian mixture clustering and improved conditional variational autoencoder[J]. Electric Power, 2024, 57 (12): 17- 29. | |
16 | 胥备, 刘桐. 基于改进高斯混合变分自编码器的半监督情感音乐生成[J]. 计算机科学, 2024, 51 (8): 281- 296. |
XU Bei, LIU Tong. Semi-supervised emotional music generation method based on improved Gaussian mixture variational autoencoders[J]. Computer Science, 2024, 51 (8): 281- 296. | |
17 | 王德鑫. 基于对比学习的图像生成系统的设计与实现[D]. 北京: 北京邮电大学, 2023. |
WANG Dexin. Design and realization of graphic generation system based on contrastive learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2023. | |
18 | 徐恒辉, 姚杰, 周萍, 等. 基于运行数据的光伏电站状态评估方法研究[J]. 电力科技与环保, 2023, 39 (5): 450- 456. |
XU Henghui, YAO Jie, ZHOU Ping, et al. Research on photovoltaic power plant state evaluation based on operating data[J]. Electric Power Technology and Environmental Protection, 2023, 39 (5): 450- 456. | |
19 |
赵冬梅, 孙明伟, 宿梦月, 等. 基于改进SKNet-SVM的网络安全态势评估[J]. 应用科学学报, 2024, 42 (2): 334- 349.
DOI |
ZHAO Dongmei, SUN Mingwei, SU Mengyue, et al. Network security situation assessment based on improved SKNet-SVM[J]. Journal of Applied Sciences, 2024, 42 (2): 334- 349.
DOI |
[1] | Yawen YI, Chuanbin JIANG, Shiyu GONG, Xiaoyuan QIN, Jingpu ZHAO, Zhenxing LI. Protection Loop Error Measurement Based on Factor Analysis and Statistics Technology [J]. Electric Power, 2023, 56(12): 183-190. |
[2] | LIU Tao, WU Guoyang, DAI Hanyang, SU Zhida, SONG Xinli, XIAO Xiong, HAO Jie. Error Evaluation Method for Parameter Check of Electromechanical Transient Model of HVDC Transmission Control System [J]. Electric Power, 2022, 55(4): 123-131. |
[3] | WANG Dameng, MA Zhiyong, LIU Yibing, TENG Wei. Hierarchical Bayesian Reliability Model for Wind Turbines with Small Fault Sample Sets [J]. Electric Power, 2019, 52(12): 97-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||