Electric Power ›› 2024, Vol. 57 ›› Issue (11): 191-198.DOI: 10.11930/j.issn.1004-9649.202307015
• Information and Communication • Previous Articles
Received:
2023-07-06
Accepted:
2023-10-04
Online:
2024-11-23
Published:
2024-11-28
Supported by:
Zanhong WU. Low-Power Data Return Method for Strong Interference Power IoT[J]. Electric Power, 2024, 57(11): 191-198.
节点 数量 | 数据信道 总计带宽/ MHz | 窄带数 据带宽/ kHz | 控制信 道带宽/ kHz | 节点最大 发射功率/ dBm | 强弱干扰 功率门限/ dBm | 控制信道 时隙长度/ μs | ||||||
128 | 100 | 20 | 10 | 10 |
Table 1 Simulation parameters
节点 数量 | 数据信道 总计带宽/ MHz | 窄带数 据带宽/ kHz | 控制信 道带宽/ kHz | 节点最大 发射功率/ dBm | 强弱干扰 功率门限/ dBm | 控制信道 时隙长度/ μs | ||||||
128 | 100 | 20 | 10 | 10 |
1 | 何立民. 从智能电网、物联网到泛在电力物联网[J]. 单片机与嵌入式系统应用, 2022, 22 (4): 3- 5, 10. |
HE Limin. From smart grid and Internet of Things to ubiquitous power Internet of Things[J]. Microcontrollers & Embedded Systems, 2022, 22 (4): 3- 5, 10. | |
2 | 田飞燕, 陈晓明, 钟财军, 等. 6G蜂窝物联网的大规模接入技术[J]. 物联网学报, 2020, 4 (1): 92- 103. |
TIAN Feiyan, CHEN Xiaoming, ZHONG Caijun, et al. Massive access technology in 6G cellular Internet of Things network[J]. Chinese Journal on Internet of Things, 2020, 4 (1): 92- 103. | |
3 | 王旭. 物联网技术及在智慧城市建设中的应用[J]. 通讯世界, 2019, 26 (3): 242- 243. |
4 | 丁晔. 物联网在智慧农业中的应用性研究[J]. 新农业, 2021, (22): 45. |
5 | 曾鸣, 王雨晴, 李明珠, 等. 泛在电力物联网体系架构及实施方案初探[J]. 智慧电力, 2019, 47 (4): 1- 7, 58. |
ZENG Ming, WANG Yuqing, LI Mingzhu, et al. Preliminary study on the architecture and implementation plan of widespread power Internet of Things[J]. Smart Power, 2019, 47 (4): 1- 7, 58. | |
6 | 王晓彩. 基于载波侦听的NB-IoT-D2D通信资源分配研究[D]. 郑州: 郑州大学, 2020. |
WANG Xiaocai. Research on NB-IoT-D2D communication resource allocation based on carrier sense[D]. Zhengzhou: Zhengzhou University, 2020. | |
7 |
杜书, 马玫, 赵波, 等. 用于电力物联网随机接入的低碰撞跳频通信系统[J]. 电信科学, 2023, 39 (1): 117- 125.
DOI |
DU Shu, MA Mei, ZHAO Bo, et al. Low-hit frequency-hopping communication systems for power Internet of Things random access[J]. Telecommunications Science, 2023, 39 (1): 117- 125.
DOI |
|
8 | 万尚军, 费章君, 杨仕友, 等. 配电房物联网关方案研究[J]. 物联网技术, 2023, 13 (1): 60- 62, 66. |
9 | 陈小利, 黄戌霞, 林静. LoRa和NB-IoT通信技术在环境监测中的应用[J]. 电子技术, 2023, 52 (1): 16- 18. |
CHEN Xiaoli, HUANG Xuxia, LIN Jing. Application of LoRa and NB-IoT communication technology in environmental monitoring[J]. Electronic Technology, 2023, 52 (1): 16- 18. | |
10 | 陈德富, 刘小湖, 周旭文, 等. 基于LoRa自组网的电能采集系统设计与实现[J]. 计算机测量与控制, 2023, 31 (3): 235- 240, 261. |
CHEN Defu, LIU Xiaohu, ZHOU Xuwen, et al. Design and implementation of power collection system based on LoRa ad hoc network[J]. Computer Measurement & Control, 2023, 31 (3): 235- 240, 261. | |
11 | 王星然, 陈济颖. 工业自动化控制系统中抗干扰技术的有效运用研究[J]. 自动化应用, 2018, (10): 137- 138. |
12 | 王桂琴. 工业机器人电缆的抗电磁干扰优化设计[J]. 电子技术与软件工程, 2019, (21): 78- 79. |
13 |
李沙沙, 褚学林. 工业自动化项目中电磁兼容问题及处理方法[J]. 南方农机, 2020, 51 (11): 194- 195.
DOI |
14 | WU Anwu, DENG Xinli. Design strategy of electromagnetic compatibility for industrial field hardware circuit system[J]. Machine Tool & Hydraulics, 2016, 44 (24): 57- 62. |
15 | TLAKE L C, MARKUS E D, ABU-MAHFOUZ A M. A review of interference challenges on integrated 5GNR and NB-IoT networks[C]//2021 IEEE AFRICON. Arusha, Tanzania, United Republic of. IEEE, 2021: 1–6. |
16 | PROMSUK N, TAPARUGSSANAGORN A, VARTIAINEN J. Interference suppression methods with adaptive threshold in Internet of Things (IoT) systems[C]//2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE). Phuket, Thailand. IEEE, 2017: 1–6. |
17 | DIONÍSIO R, LOLIĆ T, TORRES P. Electromagnetic interference analysis of industrial IoT networks: from legacy systems to 5G[C]//2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). Riga, Latvia. IEEE, 2020: 41–46. |
18 | GUNATILAKA D, SHA M, LU C Y. Impacts of channel selection on industrial wireless sensor-actuator networks[C]//IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. Atlanta, GA, USA. IEEE, 2017: 1–9. |
19 | FARRAJ A. Cooperative transmission strategy for industrial IoT against interference attacks[C]//2023 IEEE Texas Power and Energy Conference (TPEC). College Station, TX, USA. IEEE, 2023: 1–6. |
20 | GONZÁLEZ G J, GREGORIO F H, COUSSEAU J. Successive interference cancellation for the NB-IoT uplink multiple access[C]//2020 Argentine Conference on Electronics (CAE). Buenos Aires, Argentina. IEEE, 2020: 41–46. |
21 |
ZHANG X K, ZHANG B N, GUO D X. Performance of poly-polarization multiplexing in narrow-band wireless communication aided by pre-compensation and multi-notch OPPFs[J]. IEEE Wireless Communications Letters, 2017, 6 (4): 478- 481.
DOI |
22 | WU Q L, ZHANG C. Ultra narrow band transmission system with orbital angular momentum[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, QC, Canada. IEEE, 2021: 1–5. |
23 | ZHENG M Y, HUANG T T, WANG L, et al. Performance analysis of M-ary DCSK system over narrow band power-line communications[C]//2017 23rd Asia-Pacific Conference on Communications (APCC). Perth, WA, Australia. IEEE, 2017: 1–6. |
24 | LI B Z, HOU F, ZHANG C Y, et al. MAC-AC: a novel distributed MAC protocol for accessing channel in vehicular ad hoc networks[C]//2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, BC, Canada. IEEE, 2020: 1–5. |
25 | WANG Z Y, XU G S, ZHANG M, et al. Collision avoidance models and algorithms in the era of Internet of vehicles[C]//2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). Chongqing City, China. IEEE, 2020: 123–126. |
[1] | SHI Jiyin, SHI Sheng, WANG Da, LU Wanhua, LIN Xiaoyuan. Setting Configuration and Adjustment Method of Synchronous Condenser System Under Idling Conditions [J]. Electric Power, 2023, 56(7): 117-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||