Electric Power ›› 2023, Vol. 56 ›› Issue (7): 117-124.DOI: 10.11930/j.issn.1004-9649.202212038
• Power System • Previous Articles Next Articles
SHI Jiyin1, SHI Sheng1, WANG Da2, LU Wanhua1, LIN Xiaoyuan1
Received:
2022-12-10
Revised:
2023-04-05
Accepted:
2023-03-10
Online:
2023-07-23
Published:
2023-07-28
Supported by:
SHI Jiyin, SHI Sheng, WANG Da, LU Wanhua, LIN Xiaoyuan. Setting Configuration and Adjustment Method of Synchronous Condenser System Under Idling Conditions[J]. Electric Power, 2023, 56(7): 117-124.
[1] 乔丽, 王航, 谢剑, 等. 同步调相机对分层接入特高压直流输电系统的暂态过电压抑制作用研究[J]. 中国电力, 2020, 53(3): 43–51 QIAO Li, WANG Hang, XIE Jian, et al. Suppressing effect of synchronous condenser on transient overvoltage of UHVDC system under hierarchical connection mode[J]. Electric Power, 2020, 53(3): 43–51 [2] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究[J]. 电网技术, 2017, 41(1): 22–28 WANG Yating, ZHANG Yichi, ZHOU Qinyong, et al. Study on application of new generation large capacity synchronous condenser in power grid[J]. Power System Technology, 2017, 41(1): 22–28 [3] 曹桂州, 陈二强, 范轩杰, 等. 同步调相机极限工况下典型磁场不对称故障安全风险[J]. 中国电力, 2023, 56(2): 45–52, 76 CAO Guizhou, CHEN Erqiang, FAN Xuanjie, et al. Safety risk of synchronous condenser with typical asymmetric magnetic field faults under extreme operating conditions[J]. Electric Power, 2023, 56(2): 45–52, 76 [4] 邱威, 贺静波, 樊小伟, 等. 应对特高压直流大扰动的稳定措施综述[J]. 电网技术, 2022, 46(8): 3049–3067 QIU Wei, HE Jingbo, FAN Xiaowei, et al. Overview on stability measures for large disturbances of UHVDC[J]. Power System Technology, 2022, 46(8): 3049–3067 [5] 孙鹏伟, 姚文峰, 黄东启, 等. STATCOM与新型调相机的技术性和经济性比较[J]. 南方电网技术, 2021, 15(1): 82–88 SUN Pengwei, YAO Wenfeng, HUANG Dongqi, et al. Technical and economic comparison between STATCOM and the new generation sychronous condenser[J]. Southern Power System Technology, 2021, 15(1): 82–88 [6] 曹炜, 张甜, 傅业盛, 等. 同步调相机增强电力系统惯性和改善频率响应的研究与应用[J]. 电力系统自动化, 2020, 44(3): 1–10 CAO Wei, ZHANG Tian, FU Yesheng, et al. Research and application for increasing inertia and improving frequency response of power system by using synchronous condenser[J]. Automation of Electric Power Systems, 2020, 44(3): 1–10 [7] 阮羚, 王庆, 凌在汛, 等. 新型大容量调相机性能特点及工程应用[J]. 中国电力, 2017, 50(12): 57–61 RUAN Ling, WANG Qing, LING Zaixun, et al. Study on the performance feature and key engineering application of new large capacity condenser[J]. Electric Power, 2017, 50(12): 57–61 [8] 朱宏超, 沈轶君, 熊鸿韬, 等. 调相机与静态无功补偿装置的容量配置和协调控制策略[J]. 电力科学与技术学报, 2021, 36(6): 47–55 ZHU Hongchao, SHEN Yijun, XIONG Hongtao, et al. Capacity configuration and coordinated control strategy of synchronous condensers and static reactive power compensation devices[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 47–55 [9] 张鑫, 刘飞, 王世斌, 等. 提升特高压直流送端电网新能源消纳水平措施[J]. 电力系统及其自动化学报, 2022, 34(6): 135–141 ZHANG Xin, LIU Fei, WANG Shibin, et al. Measures to improve the new energy consumption level of UHVDC sending-end power gird[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 135–141 [10] 赵溶溶, 柯德平, 孙元章, 等. 考虑直流闭锁暂态过电压约束的送端电网换流站高效无功规划[J]. 南方电网技术, 2022, 16(7): 10–21 ZHAO Rongrong, KE Deping, SUN Yuanzhang, et al. Efficient reactive power planning of converter station in HVDC sending system considering HVDC blocking transient overvoltage constraint[J]. Southern Power System Technology, 2022, 16(7): 10–21 [11] 索之闻, 李晖, 张锋, 等. 高比例新能源直流送端系统分布式调相机优化配置[J]. 电力系统保护与控制, 2022, 50(23): 133–141 SUO Zhiwen, LI Hui, ZHANG Feng, et al. Optimal configuration of a distributed synchronous condenser for an HVDC sending-end system with a high-proportion of renewable energy[J]. Power System Protection and Control, 2022, 50(23): 133–141 [12] 陶骞, 王庆, 阮羚, 等. 特高压直流工程大型调相机组启动调试及关键技术[J]. 中国电力, 2017, 50(12): 51–56 TAO Qian, WANG Qing, RUAN Ling, et al. Contents and key technical problems in start-up and commissioning of large-scale synchronous condenser in UHVDC project[J]. Electric Power, 2017, 50(12): 51–56 [13] 李志坚, 吴崇昊, 万洛飞, 等. 大型同步调相机的启机过程分析与启机保护实现[J]. 电力系统保护与控制, 2020, 48(20): 148–154 LI Zhijian, WU Chonghao, WAN Luofei, et al. Analysis of start-up process and implementation of start-up protection of a large synchronous condenser[J]. Power System Protection and Control, 2020, 48(20): 148–154 [14] 石祥建, 牟伟, 韩焦, 等. 大型同步调相机控制策略研究[J]. 中国电力, 2017, 50(12): 44–50 SHI Xiangjian, MU Wei, HAN Jiao, et al. Research on control strategy of large synchronous condensers[J]. Electric Power, 2017, 50(12): 44–50 [15] WANG P Y, LIU X, MOU Q W, et al. Start-up control and grid integration characteristics of 300 Mvar synchronous condenser with voltage sourced converter-based SFC[J]. IEEE Access, 2019, 7: 176921–176934. [16] 杨合民, 郑玉平, 王小红, 等. 大型同步调相机惰转并网成功率计算方法[J]. 电力系统自动化, 2018, 42(24): 74–78 YANG Hemin, ZHENG Yuping, WANG Xiaohong, et al. Calculation method of success rate for idling grid-connection of large synchronous condensers[J]. Automation of Electric Power Systems, 2018, 42(24): 74–78 [17] 曹泽宇, 孙毅超, 丁楠木, 等. 基于惰速点整定的新型同步调相机并网成功率提高方法[J]. 电力系统自动化, 2020, 44(6): 138–145 CAO Zeyu, SUN Yichao, DING Nanmu, et al. Improvement method of grid-connection success rate for new-type synchronous condenser based on idle speed point setting[J]. Automation of Electric Power Systems, 2020, 44(6): 138–145 [18] 曾先锋, 侯炜, 陈俊. 大型调相机惰速同期并网可靠性研究[J]. 中国电力, 2017, 50(12): 38–43 ZENG Xianfeng, HOU Wei, CHEN Jun. Reliability research on idle speed synchronization of large condenser[J]. Electric Power, 2017, 50(12): 38–43 [19] 蒋梦瑶, 汤晓峥, 刘一丹, 等. 基于相角差时间函数调相机并网合闸时间预测[J]. 电力工程技术, 2020, 39(2): 18–22 JIANG Mengyao, TANG Xiaozheng, LIU Yidan, et al. Prediction of grid-connected closing time of synchronous condenser based on improved phase-difference time function[J]. Electric Power Engineering Technology, 2020, 39(2): 18–22 [20] 叶尚尚, 郭晓娴, Thanh HUA, 等. 基于时间常数的核电厂主循环泵惰转模型开发与验证[J]. 原子能科学技术, 2020, 54(4): 642–647 YE Shangshang, GUO Xiaoxian, HUA T, et al. Development and verification of coast-down model for coolant pump of nuclear power plant based on time parameter[J]. Atomic Energy Science and Technology, 2020, 54(4): 642–647 [21] SHI X J, HUANG H Q, LIU T, et al. Optimized idling grid-connection strategy for synchronous condenser[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2020, 28(5): 2895–2909. [22] 彭晓涛, 王少荣, 程时杰. 高性能微机自动准同期装置[J]. 电力系统自动化, 2002, 26(9): 75–77 PENG Xiaotao, WANG Shaorong, CHENG Shijie. A high performance microprocessor-based automatic quasi-synchronization device[J]. Automation of Electric Power Systems, 2002, 26(9): 75–77 [23] 潘书燕, 曹团结, 陈永华. 在线路测控单元中实现的准同期功能[J]. 继电器, 2003, 31(12): 58–60 PAN Shuyan, CAO Tuanjie, CHEN Yonghua. Necessity of the quasi-synchronization functions in the line monitor and control unit[J]. Relay, 2003, 31(12): 58–60 [24] 毛俊喜, 揭萍, 谭凌, 等. 大容量调相机同期并网技术研究[J]. 河北电力技术, 2018, 37(6): 19–23 MAO Junxi, JIE Ping, TAN Ling, et al. Technology on quasi-synchronous of large-capacity synchronous condenser[J]. Hebei Electric Power, 2018, 37(6): 19–23 |
[1] | Zanhong WU. Low-Power Data Return Method for Strong Interference Power IoT [J]. Electric Power, 2024, 57(11): 191-198. |
[2] | CAO Guizhou, CHEN Erqiang, FAN Xuanjie, WU Yucai, LI Zhenping, SHI Shuhuai. Safety Risk of Synchronous Condenser with Typical Asymmetric Magnetic Field Faults Under Extreme Operating Conditions [J]. Electric Power, 2023, 56(2): 45-52,76. |
[3] | LI Dongsheng, HAO Liangliang, GUO Zhilin, CAO Hong, WANG Xingguo. A Setting Optimization Strategy for Distance Protection Ⅱ after Connection of Synchronous Condensers [J]. Electric Power, 2022, 55(5): 76-83. |
[4] | QIAO Li, WANG Hang, XIE Jian, GUO Chunyi. Suppressing Effect of Synchronous Condenser on Transient Overvoltage of UHVDC System under Hierarchical Connection Mode [J]. Electric Power, 2020, 53(3): 43-51. |
[5] | WU Kuayu, LU Cencen, YUAN Yazhou. Simulation Analysis of Voltage Support to Binjin HVDC Provided by Pumped Storage Unit's Synchronous Condenser Operation [J]. Electric Power, 2018, 51(3): 54-61. |
[6] | WEN Huifeng, LONG Guojun, YAO Jiantao, CAO Jieyu, LIU Yongbing, DANG Zhijun. Application Study on the Treatment of Steam Turbine Salt Deposit in Case Closing Condition [J]. Electric Power, 2017, 50(8): 78-81. |
[7] | RUAN Ling, WANG Qing, LING Zaixun, YANG Pengcheng, CUI Yibo, CAI Wanli, TAO Qian. Study on the Performance Feature and Key Engineering Application of New Large Capacity Condenser [J]. Electric Power, 2017, 50(12): 57-61. |
[8] | TAO Qian, WANG Qing, RUAN Ling, CAI Wanli, CUI Yibo, LING Zaixun. Contents and Key Technical Problems in Start-Up and Commissioning of Large-Scale Synchronous Condenser in UHVDC Project [J]. Electric Power, 2017, 50(12): 51-56. |
[9] | SHI Xiangjian, MU Wei, HAN Jiao, FANG Bing, GAO Sen, WU Long, LIU Weiqun. Research on Control Strategy of Large Synchronous Condensers [J]. Electric Power, 2017, 50(12): 44-50. |
[10] | ZENG Xianfeng, HOU Wei, CHEN Jun. Reliability Research on Idle Speed Synchronization of Large Condenser [J]. Electric Power, 2017, 50(12): 38-43. |
[11] | DENG Yuqiang, LI Haiping, ZHANG Xiangjin, NI Ruitao, QI Dongdong, SONG Fei. Corrosion and Protection of Air-Cooled Condensers in Thermal Power Plant [J]. Electric Power, 2015, 48(5): 12-16. |
[12] | GUO Min-chen, LI Mei-bao, PENG Xin-fei, FAN Xue. Computational Analysis on the Influence of Dust Accumulation of Air-Cooled Condenser on Unit Outputs [J]. Electric Power, 2013, 46(9): 52-55. |
[13] | GAO Pei, ZHANG Xue-lei. Performance of Direct Air-Cooled Condenser Under Windy Conditions and Its Influencing Factors [J]. Electric Power, 2013, 46(11): 113-118. |
[14] | HAN Zhong-he, ZHENG Qing-yu, WU Zhi-quan, WANG Zhi. Off-design characteristics of condenser in direct air-cooling 1 000 MW unit [J]. Electric Power, 2012, 45(2): 22-25. |
[15] | LIU Zhi-jiang. Optimization of Water Treatment System for Combined Power, Water and Heat Generation Units [J]. Electric Power, 2012, 45(11): 28-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||