| 1 |
北极星输配电网. 2020南瑞集团调研[EB/OL]. (2022-07-04)[2022-12-13]. https://news.bjx.com.cn/html/20220704/1238071.shtml.
|
| 2 |
国家能源局. 《电力二次系统安全管理若干规定》政策解读[EB/OL]. (2022-11-23)[2022-12-13]. http://www.nea.gov.cn/2022-11/23/c_1310679041.htm.
|
| 3 |
唐志军, 李泽科, 陈建洪, 等. 考虑设备相关性的智能变电站二次系统可靠性分析[J]. 福州大学学报(自然科学版), 2021, 49 (6): 782- 789.
|
|
TANG Zhijun, LI Zeke, CHEN Jianhong, et al. Reliability analysis for intelligent substation secondary system considering equipment correlation[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49 (6): 782- 789.
|
| 4 |
赵红. 智能变电站二次设备状态评估方法研究[D]. 重庆: 重庆大学, 2017.
|
|
ZHAO Hong. Research on status evaluation method for smart substation secondary equipments[D]. Chongqing: Chongqing University, 2017.
|
| 5 |
胡宇薇. 神经网络专家系统在电力系统输电设备保护中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
HU Yuwei. Application and research on neural networks and expert system in power system transmission equipment protection[D]. Harbin: Harbin Institute of Technology, 2018.
|
| 6 |
胡凡. 智能变电站二次系统可靠性评估[D]. 济南: 山东大学, 2015.
|
|
HU Fan. Reliability evaluation of secondary system of intelligent substation[D]. Jinan: Shandong University, 2015.
|
| 7 |
唐楚雪, 陈德明. 基于模糊数学和变权理论的智能变电站二次设备状态估计[J]. 电气自动化, 2018, 40 (6): 71- 73.
|
|
TANG Chuxue, CHEN Deming. State evaluation for secondary equipment of intelligent substations based on fuzzy mathematics and variable weight theory[J]. Electrical Automation, 2018, 40 (6): 71- 73.
|
| 8 |
滕宇行. 变电站二次设备智能巡检系统设计与实现[D]. 大连: 大连理工大学, 2023.
|
|
TENG Yuhang. Design and implementation of intelligent inspection system for secondary equipment of substation[D]. Dalian: Dalian University of Technology, 2023.
|
| 9 |
吴文传, 吕颖, 张伯明. 继电保护隐患的运行风险在线评估[J]. 中国电机工程学报, 2009, 29 (7): 78- 83.
|
|
WU Wenchuan, LÜ Ying, ZHANG Boming. On-line operating risk assessment of hidden failures in protection system[J]. Proceedings of the CSEE, 2009, 29 (7): 78- 83.
|
| 10 |
南东亮, 王维庆, 张陵, 等. 基于关联规则挖掘与组合赋权-云模型的电网二次设备运行状态风险评估[J]. 电力系统保护与控制, 2021, 49 (10): 67- 76.
|
|
NAN Dongliang, WANG Weiqing, ZHANG Ling, et al. Risk assessment of the operation state of power grid secondary equipment based on association rule mining and combination weighting-cloud model[J]. Power System Protection and Control, 2021, 49 (10): 67- 76.
|
| 11 |
邬小坤, 赵武智, 牛静, 等. 一种智能变电站二次设备状态评价方法[J]. 电子器件, 2021, 44 (3): 664- 669.
|
|
WU Xiaokun, ZHAO Wuzhi, NIU Jing, et al. A state assessment method for secondary equipment in intelligent substation[J]. Chinese Journal of Electron Devices, 2021, 44 (3): 664- 669.
|
| 12 |
李龙, 陈乾, 杨瑞, 等. 基于Hamacher算子的变电站自动化二次设备状态模糊综合评估方法[J]. 湖北电力, 2022, 46 (3): 45- 49.
|
|
LI Long, CHEN Qian, YANG Rui, et al. Fuzzy comprehensive evaluation method for substation automatic secondary equipment status based on Hamacher operator[J]. Hubei Electric Power, 2022, 46 (3): 45- 49.
|
| 13 |
陈勇, 李胜男, 张丽, 等. 基于改进Apriori算法的智能变电站二次设备缺陷关联性分析[J]. 电力系统保护与控制, 2019, 47 (20): 135- 141.
|
|
CHEN Yong, LI Shengnan, ZHANG Li, et al. Association analysis for defect data of secondary device in smart substations based on improved Apriori algorithm[J]. Power System Protection and Control, 2019, 47 (20): 135- 141.
|
| 14 |
张宇泽, 张日新. 基于Apriori算法的配电线路故障关联分析[J]. 电工技术, 2022, (5): 138- 140.
|
|
ZHANG Yuze, ZHANG Rixin. Association analysis of distribution line fault based on Apriori algorithm[J]. Electric Engineering, 2022, (5): 138- 140.
|
| 15 |
王鸣誉, 李铁成, 任江波, 等. 利用Apriori算法实现变电站二次系统故障诊断[J]. 电力系统及其自动化学报, 2021, 33 (11): 145- 150.
|
|
WANG Mingyu, LI Tiecheng, REN Jiangbo, et al. Realization of fault diagnosis of substation secondary system using Apriori algorithm[J]. Proceedings of the CSU-EPSA, 2021, 33 (11): 145- 150.
|
| 16 |
REN Y W, LIU L, WANG Z H, et al. A fault analysis and prediction of aircraft based on association rules and weibull distribution[C]//2019 10th International Conference on Information Technology in Medicine and Education (ITME). Qingdao, China. IEEE, 2019: 570–578.
|
| 17 |
白浩, 袁智勇, 孙睿, 等. 基于Apriori算法和卷积神经网络的配电设备运行效率主要影响因素挖掘[J]. 电力建设, 2020, 41 (3): 31- 38.
|
|
BAI Hao, YUAN Zhiyong, SUN Rui, et al. Method based on Apriori algorithm and convolution neural network for mining main influencing factors of distribution equipment operation efficiency[J]. Electric Power Construction, 2020, 41 (3): 31- 38.
|
| 18 |
史佳琪, 马丽雅, 李晨晨, 等. 基于串行-并行集成学习的高峰负荷预测方法[J]. 中国电机工程学报, 2020, 40 (14): 4463- 4472, 4726.
|
|
SHI Jiaqi, MA Liya, LI Chenchen, et al. Daily peak load forecasting based on sequential-parallel ensemble learning[J]. Proceedings of the CSEE, 2020, 40 (14): 4463- 4472, 4726.
|
| 19 |
MEHMOOD K, UL HASSAN H T, RAZA A, et al. Optimal power generation in energy-deficient scenarios using bagging ensembles[J]. IEEE Access, 2019, 7, 155917- 155929.
|
| 20 |
郑元兵. 变压器故障诊断与预测集成学习方法及维修决策模型研究[D]. 重庆: 重庆大学, 2011.
|
|
ZHENG Yuanbing. Research on ensemble learning of fault diagnosis and prediction and maintenance decision-making models for transformers[D]. Chongqing: Chongqing University, 2011.
|
| 21 |
ZHANG Y, BURER S, STREET W N. Ensemble pruning via semi-definite programming[J]. Journal of Machine Learning Research, 2006, 7, 1315- 1338.
|
| 22 |
HU R H, ZHOU S B, LIU Y S, et al. Margin-based Pareto ensemble pruning: an ensemble pruning algorithm that learns to search optimized ensembles[J]. Computational Intelligence and Neuroscience, 2019, 2019, 7560872.
|