Electric Power ›› 2024, Vol. 57 ›› Issue (7): 66-73.DOI: 10.11930/j.issn.1004-9649.202309026
• Modeling and Decision-making for Uncertainty in the New Power System • Previous Articles Next Articles
Jiayan HAN(), Yanling LÜ(
), Chong ZHOU(
)
Received:
2023-09-06
Accepted:
2023-12-05
Online:
2024-07-23
Published:
2024-07-28
Supported by:
Jiayan HAN, Yanling LÜ, Chong ZHOU. Multi-mode Control Method of Gravity Energy Storage DC Link Battery[J]. Electric Power, 2024, 57(7): 66-73.
参数 | 归一化标称值范围 | 标准值 | ||
输入功率 Pin/W | 0~1 | Pinnom | ||
重力储能功率 Ps/W | –1~1 | Pinnom | ||
电池输入的功率 PB/W | –1~1 | Pinnom | ||
母线电压值 VDC/V | 0~1 | VDCnom | ||
母线电压给定值 | >0 | VDCnom | ||
电机输出转矩 T/(kg·m) | 0~1 | Tmax | ||
重物转矩 TG/(kg·m) | 0.5 | Tmax |
Table 1 System parameters
参数 | 归一化标称值范围 | 标准值 | ||
输入功率 Pin/W | 0~1 | Pinnom | ||
重力储能功率 Ps/W | –1~1 | Pinnom | ||
电池输入的功率 PB/W | –1~1 | Pinnom | ||
母线电压值 VDC/V | 0~1 | VDCnom | ||
母线电压给定值 | >0 | VDCnom | ||
电机输出转矩 T/(kg·m) | 0~1 | Tmax | ||
重物转矩 TG/(kg·m) | 0.5 | Tmax |
1 | 蒋棹骏, 向月, 谈竹奎, 等. 计及需求响应的高比例清洁能源园区储能容量优化配置[J]. 中国电力, 2023, 56 (12): 147- 155, 163. |
JIANG Zhaojun, XIANG Yue, TAN Zhukui, et al. Optimal allocation of energy storage capacity in high proportion clean energy parks considering demand response[J]. Electric Power, 2023, 56 (12): 147- 155, 163. | |
2 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
3 | 谷晴, 李睿, 蔡旭, 等. 面向百兆瓦级应用的电池储能系统拓扑与控制方法[J]. 发电技术, 2022, 43 (5): 698- 706. |
GU Qing, LI Rui, CAI Xu, et al. Topology and control method of battery energy storage system for applicaiton at the scale of hundreds of meggawatts[J]. Power Generation Technology, 2022, 43 (5): 698- 706. | |
4 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11 (5): 1575- 1582. |
WANG Su, XIAO Liye, TANG Wenbing, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11 (5): 1575- 1582. | |
5 |
O’GRADY C. Gravity powers batteries for renewable energy[J]. Science, 2021, 372 (6541): 446.
DOI |
6 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12 (3): 835- 845. |
QIN Tingting, ZHOU Xuezhi, GUO Dingzhang, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12 (3): 835- 845. | |
7 | LUJANO-ROJAS J M, YUSTA J M, DOMÍNGUEZ-NAVARRO J A, et al. Combining genetic and gravitational search algorithms for the optimal management of battery energy storage systems in real-time pricing markets[C]//2020 IEEE Industry Applications Society Annual Meeting. Detroit, MI, USA. IEEE, 2020: 1–7. |
8 | SHAH D, VERMA J, KANNA R R, et al. Energy optimization for solar powered rural agro loads with elevated energy storage system[C]//2021 National Power Electronics Conference (NPEC). Bhubaneswar, India. IEEE, 2021: 1–6. |
9 |
WU X, LI N L, WANG X L, et al. Day-ahead scheduling of a gravity energy storage system considering the uncertainty[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (2): 1020- 1031.
DOI |
10 | CHEN Y Y, HOU H, XU T, et al. A new gravity energy storage operation mode to accommodate renewable energy[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Macao, China. IEEE, 2019: 1–5. |
11 |
HAIDER S, SHAHMORADI-MOGHADAM H, SCHÖNBERGER J O, et al. Algorithm and optimization model for energy storage using vertically stacked blocks[J]. IEEE Access, 2020, 8, 217688- 217700.
DOI |
12 | 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术, 2022, 54 (1): 97- 105. |
CHEN Yunliang, LIU Min, FAN Jiayi, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54 (1): 97- 105. | |
13 | 刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45 (1): 30- 35. |
LIU Zhiyang, SONG Hangxuan, FANG Kuan, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45 (1): 30- 35. | |
14 | AL-HILFI L M A, MORRIS S, JIANHUI W, et al. Exploration of the suitability of gravity energy storage in Malaysian grid systems[C]//2022 IEEE International Conference in Power Engineering Application (ICPEA). Shah Alam, Malaysia. IEEE, 2022: 1–6. |
15 | RUFER A. Design and control of a KE (kinetic energy) - compensated gravitational energy storage system[C]//2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe). Lyon, France. IEEE, 2020: 1–11. |
16 | PUNSIRICHAIYAKUL A, RATNIYOMCHAI T, KULWORAWANICHPONG T. Gravitational energy storage by using concrete stacks[C]//2020 International Conference on Power, Energy and Innovations (ICPEI). Chiangmai, Thailand. IEEE, 2020: 17–20. |
17 | SAGAR S, SONDHI S, SAGAR J. Gravity battery: storing electrical energy in the form of gravitational potential energy[C]//2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). Greater Noida, India. IEEE, 2020: 182–188. |
18 | 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46 (3): 1016- 1026. |
MA Lan, XIE Lirong, YE Lin, et al. Wind power fluctuation suppression strategy based on hybrid energy storage Bi-level programming model[J]. Power System Technology, 2022, 46 (3): 1016- 1026. | |
19 | MOSHKIN V I, SHESTAKOV D N, UGAROV G G. Energy and dynamic efficiency of linear electromagnetic motors with one winding and with gravitational storage[C]//2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, Russia. IEEE, 2019: 1–4. |
20 | YUAN X L, YANG F, XU J Y, et al. Configuration Optimization of Wind-Solar-Storage System considering Demand Response[C]//2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS). Kitakyushu, Japan. IEEE, 2018: 1–6. |
21 |
朱永强, 郝嘉诚, 赵娜, 等. 能源互联网中的储能需求、储能的功能和作用方式[J]. 电工电能新技术, 2018, 37 (2): 68- 75.
DOI |
ZHU Yongqiang, HAO Jiacheng, ZHAO Na, et al. Demands, functions and action manners of energy storage in Energy Internet[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37 (2): 68- 75.
DOI |
|
22 | 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49 (17): 74- 84. |
HOU Hui, XU Tao, XIAO Zhenfeng, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49 (17): 74- 84. | |
23 | 郑丽君, 王子鹏, 吕世轩, 等. 基于荷电状态的直流微电网中多储能分级运行控制方法[J]. 电网技术, 2021, 45 (3): 1006- 1015. |
ZHENG Lijun, WANG Zipeng, LÜ Shixuan, et al. Hierarchical operation control of multi-energy storage in DC microgrid based on state of charge[J]. Power System Technology, 2021, 45 (3): 1006- 1015. |
[1] | Yajian ZHANG, Ci CHEN, Fei XUE, Li MA, Min ZHENG. Two-Stage Stochastic Optimal Voltage Control of High-Proportional Photovoltaic Distribution Networks Considering Auxiliary Power to Hydrogen [J]. Electric Power, 2024, 57(8): 23-35. |
[2] | Chengshuai HUANG, Jian LIANG, Bo LI, Yaxin YANG, Yang HU, Erren YAO. Study on the Thermo-economic Performance of a Integrated Energy System Based on Hydrogen-fueled Gas Turbine [J]. Electric Power, 2024, 57(1): 195-208. |
[3] | Jing WANG, Yi YUAN, Yinchi SHAO, Jinqi ZHANG, Ran DING, Yanjiang GONG. Multi-Objective Cluster Classification and Voltage Control Approach for Active Distribution Network Considering Resource Reserve Degree [J]. Electric Power, 2023, 56(12): 69-79. |
[4] | XIU Xiaoqing, LI Xiangjun, WANG Jiarui, XIE Zhijia, LV Xiangyu. Generalized Cost Study of Energy Storage Power Station Based on Equivalent Efficiency Conversion [J]. Electric Power, 2022, 55(4): 192-202. |
[5] | YANG Genye, SUN Rongfu, DING Ran, XU Haixiang, CHEN Can, WU Linlin, CHEN Qifang, XIA Mingchao. Multi Time Scale Reactive Power and Voltage Optimization of Distribution Network Considering Photovoltaic Multi State Regulation Capability [J]. Electric Power, 2022, 55(3): 105-114. |
[6] | LIN Rihui, CHEN Youli. Frequency-Voltage Digital Intelligent Control Strategy of Microgrid with User-Side Energy Storage Based on Deep Q-Learning [J]. Electric Power, 2022, 55(12): 43-50. |
[7] | GUO Xiaolong, ZHANG Jiangfei, KANG Pengpeng, YANG Guixing, SUN Yiqian, YUAN Tiejiang, LIU Yong. Virtual Synchronization Control Strategy for UHVDC with Secondary Frequency Modulation Based on PI Control [J]. Electric Power, 2022, 55(11): 66-72. |
[8] | LIU Haitao, CHEN Biao, ZHU Lin, LU Xiang, QI Shenglong, ZOU Hongbo. A Voltage Control Method Considering the Collaborative Optimization of Multiple Reactive Power Compensation Devices [J]. Electric Power, 2022, 55(11): 97-102. |
[9] | JIN Ziran, WU Hongbin, ZHOU Yiyao, XU Bin, DING Jinjin, WEI Wei. Multi-time Scale Adaptive Reactive Voltage Control for Distribution Networks Based on Voltage Tendency Coefficient [J]. Electric Power, 2021, 54(11): 69-75. |
[10] | FU Hongjun, CHEN Huifen, ZHAO Hua, WANG Kaifeng, LU Zongxiang, QIAO Ying. Review on Frequency Regulation Technology with High Wind Power Penetration [J]. Electric Power, 2021, 54(1): 104-115. |
[11] | YAO Xiangyu, JIANG Dong, SHAO Xianqing, ZHANG Jie. Charging System Design of Mobile Rescue Charging Vehicle [J]. Electric Power, 2018, 51(5): 80-86,117. |
[12] | WANG Jinli, MA Zhao, PAN Xu, WANG Li. On-load Tap-changing Technology of Distribution Transformer [J]. Electric Power, 2018, 51(5): 75-79,100. |
[13] | WU Bingxin, XIE Weihua, YE Hongen. Study on DC Bus Voltage Deviation Control Autonomy in Hybrid AC/DC Micro-Grid [J]. Electric Power, 2017, 50(1): 62-66. |
[14] | ZHANG Shi, ZHOU Yibo, LI Weiguo, ZHAO Xiang. Impact of Voltage Controlled DFIG to Wind-Thermal Bundled System Transient Stability [J]. Electric Power, 2016, 49(7): 51-53. |
[15] | LI Chengyao, YANG Yong, ZHU Binbin. A Novel Single-Phase PV Generation System with LVRT Capability [J]. Electric Power, 2016, 49(3): 160-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||