Electric Power ›› 2023, Vol. 56 ›› Issue (5): 118-128.DOI: 10.11930/j.issn.1004-9649.202207079
• Power System • Previous Articles Next Articles
ZHANG Li1, LIU Qinglei1, ZHANG Hongwei2
Received:
2022-07-27
Revised:
2022-12-08
Accepted:
2022-10-25
Online:
2023-05-23
Published:
2023-05-28
Supported by:
ZHANG Li, LIU Qinglei, ZHANG Hongwei. Home Load Optimization Scheduling Strategy Based on Improved Binary Particle Swarm Optimization Algorithm[J]. Electric Power, 2023, 56(5): 118-128.
[1] 国家统计局. 国家数据:2021年[EB/OL]. (2021-08-02)[2022-04-26].https://data.stats.gov.cn/easyquery.htm?cn=C01. [2] 张智, 卢峰, 林振智, 等. 考虑用户有限理性的售电公司峰谷组合电力套餐设计[J]. 电力系统自动化, 2021, 45(16): 114–123 ZHANG Zhi, LU Feng, LIN Zhenzhi, et al. Peak-valley combination electricity package design for electricity retailer considering bounded rationality of consumers[J]. Automation of Electric Power Systems, 2021, 45(16): 114–123 [3] 傅质馨, 李紫嫣, 朱俊澎, 等. 面向多用户的多时间尺度电力套餐与家庭能量优化策略[J]. 电力系统保护与控制, 2022, 50(11): 21–31 FU Zhixin, LI Ziyan, ZHU Junpeng, et al. Multi-user multi-timescale power packages and home energy optimization strategies[J]. Power System Protection and Control, 2022, 50(11): 21–31 [4] 谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32–44 TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. Bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55(10): 32–44 [5] MOON S, LEE J W. Multi-residential demand response scheduling with multi-class appliances in smart grid[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2518–2528. [6] 赵安军, 王鹏柱, 荆竞, 等. 考虑电动汽车影响的农村家庭新能源容量优化配置方法[J]. 中国电力, 2022, 55(8): 31–39, 50 ZHAO Anjun, WANG Pengzhu, JING Jing, et al. Optimal configuration method of new energy capacity for rural households considering impact of electric vehicles[J]. Electric Power, 2022, 55(8): 31–39, 50 [7] 韩峰, 曾成碧, 苗虹. 计及EV与可再生能源的家庭微电网能源管理系统[J]. 电力科学与技术学报, 2021, 36(1): 79–86 HAN Feng, ZENG Chengbi, MIAO Hong. Energy management system of household microgrid considering EV and renewable energy[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 79–86 [8] WANG J S, ZHANG F, LIU H N, et al. Interruptible load scheduling model based on an improved chicken swarm optimization algorithm[J]. CSEE Journal of Power and Energy Systems, 2020, 7(2): 232–240. [9] 郭新志, 刘英新, 李秋燕, 等. 基于智能负荷控制的分布式能源系统调控策略研究[J]. 智慧电力, 2022, 50(3): 8–14 GUO Xinzhi, LIU Yingxin, LI Qiuyan, et al. Regulation strategy for distributed energy system based on intelligent load control[J]. Smart Power, 2022, 50(3): 8–14 [10] SADAT-MOHAMMADI M, NAZARI-HERIS M, NAZERFARD E, et al. Intelligent approach for residential load scheduling[J]. IET Generation, Transmission & Distribution, 2020, 14(21): 4738–4745. [11] 冯浩洋, 陈明丽, 潘峰, 等. 基于改进强度Pareto进化算法的居民用户侧源储荷协调优化[J]. 南方电网技术, 2022, 16(4): 86–94 FENG Haoyang, CHEN Mingli, PAN Feng, et al. Coordinated optimization of source-storage-load for residents based on improved strength Pareto evolutionary algorithm[J]. Southern Power System Technology, 2022, 16(4): 86–94 [12] 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19): 106–111 CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42(19): 106–111 [13] GONG F X, HAN N H, ZHANG L L, et al. Analysis of electricity consumption behavior of air conditioning based on the perspective of power demand response[C]//2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). Dalian, China. IEEE, 2020. [14] ZHU H M, GAO F K. Demand response strategy for promoting distributed power consumption based on resident load participation[C]//2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON). Nan, Thailand. IEEE, 2019: 25–29. [15] CHEN H T, CHAI J X, DU Y, et al. Local consumption model of wind and photovoltaic power based on demand side response[C]//2018 China International Conference on Electricity Distribution (CICED). Tianjin, China. IEEE, 2018: 1933–1937. [16] 李菁, 王志新, 严胜, 等. 计及舒适度的家庭能量管理系统优化控制策略[J]. 太阳能学报, 2020, 41(10): 51–58 LI Jing, WANG Zhixin, YAN Sheng, et al. Optimal operation of home energy management system considering user comfort preference[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 51–58 [17] 王珑, 王进, 龚晓琴, 等. 基于用户满意度的家庭能量管理系统协调优化调度[J]. 电力学报, 2019, 34(2): 101–108, 174 WANG Long, WANG Jin, GONG Xiaoqin, et al. The home energy management system coordinated and optimized scheduling based on user’s satisfaction[J]. Journal of Electric Power, 2019, 34(2): 101–108, 174 [18] 曲朝阳, 韩晶, 曲楠, 等. 考虑家电关联与舒适性相结合的用电行为多目标优化模型[J]. 电力系统自动化, 2018, 42(2): 50–57 QU Zhaoyang, HAN Jing, QU Nan, et al. Multi-objective optimization model of electricity consumption behavior considering combination of household appliance correlation and comfort[J]. Automation of Electric Power Systems, 2018, 42(2): 50–57 [19] 程林, 齐宁, 田立亭. 考虑运行控制策略的广义储能资源与分布式电源联合规划[J]. 电力系统自动化, 2019, 43(10): 27–35, 43 CHENG Lin, QI Ning, TIAN Liting. Joint planning of generalized energy storage resource and distributed generator considering operation control strategy[J]. Automation of Electric Power Systems, 2019, 43(10): 27–35, 43 [20] 上海能源交易所. 全国碳市场每月成交数据[EB/OL]. (2021-08-02)[2022-04-26].https://www.cneeex.com/c/2021-08-02/491377.shtml. [21] 纪姝彦. 面向智能用电的家庭能量管理研究[D]. 合肥: 合肥工业大学, 2017. JI Shuyan. Research on home energy management for intelligent power utilization[D]. Hefei: Hefei University of Technology, 2017. [22] 彭茜, 王爱娟, 李峻阳, 等. 基于高效遗传算法的电网需求侧调度优化研究及其收敛性分析[J]. 电力系统保护与控制, 2022, 50(6): 33–42 PENG Qian, WANG Aijuan, LI Junyang, et al. Optimization of the demand side dispatching of a power grid based on an efficient genetic algorithm and its convergence analysis[J]. Power System Protection and Control, 2022, 50(6): 33–42 [23] 戴海容, 李浩君, 张鹏威. 采用分等级学习策略的二进制粒子群优化算法[J]. 计算机与数字工程, 2020, 48(5): 1018–1023 DAI Hairong, LI Haojun, ZHANG Pengwei. Binary particle swarm optimization algorithm using hierarchical learning strategy[J]. Computer & Digital Engineering, 2020, 48(5): 1018–1023 [24] 王泽昆, 贺毅朝, 李焕哲, 等. 基于新颖S型转换函数的二进制粒子群优化算法求解具有单连续变量的背包问题[J]. 计算机应用, 2021, 41(2): 461–469 WANG Zekun, HE Yichao, LI Huanzhe, et al. Binary particle swarm optimization algorithm based on novel S-shape transfer function for knapsack problem with a single continuous variable[J]. Journal of Computer Applications, 2021, 41(2): 461–469 [25] 王越, 邱飞岳, 郭海东. 一种带变异算子的自适应惯性权重二进制粒子群优化算法[J]. 小型微型计算机系统, 2019, 40(4): 733–737 WANG Yue, QIU Feiyue, GUO Haidong. Adaptive inertia weight binary particle swarm optimization algorithm with mutation operator[J]. Journal of Chinese Computer Systems, 2019, 40(4): 733–737 |
[1] | XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model [J]. Electric Power, 2025, 58(4): 1-12. |
[2] | REN Peng, ZHAO Zhigang, GAO Hongchao, WEN Wu, JIANG Yingyi. Weak Connection Regulation Technology for Source-Storage-Load Collaborative Microgrids Based on Direct Power Control [J]. Electric Power, 2025, 58(4): 13-20. |
[3] | ZHAO Tong, LI Xuesong, ZHOU Hao, DING Yu, YANG Bin, WANG Wentao, WANG Peng. Electricity Carbon Coupled Market Modeling Method and Market Optimization Mechanism Based on Dynamic Carbon Emission Intensity [J]. Electric Power, 2025, 58(4): 31-43. |
[4] | ZHOU Feihang, WANG Hao, WANG Haili, WANG Meng, JIN Yaojie, LI Zhongchun, ZHANG Zhongde, WANG Peng. Multi-entity Behaviors in Electricity-Carbon-Green Certificate Coupled Markets Based on Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 44-55. |
[5] | XIANG Shilin, XIANG Yue, WANG Yanliang, LU Yu. Optimization Strategy for Spatiotemporal Cooperative Operation of Multiple Data Centers Considering Load Response Characteristics [J]. Electric Power, 2025, 58(4): 170-181. |
[6] | LI Keyun, ZHANG Ning, ZHAO Le, ZHAO Cheng, LI Jiayu, TANG Cheng. Carbon Emission Accounting Methods for Key Electric Equipment and Materials in Power Transmission and Transformation Projects [J]. Electric Power, 2025, 58(4): 193-204. |
[7] | ZHANG Feng, JIANG Jishuang, LI Chao, XIA Zhixiang, DAI Li, WANG Kaige, FANG Mengxiang, LUO Zhongyang. Quantitative Analysis of Carbon Emission from Power Transmission and Transformation Projects Based on GHGP Standard System [J]. Electric Power, 2025, 58(4): 205-215. |
[8] | Xianghai XU, Jiayi SHANG, Tianyu ZHAO, Yingfei GONG, Weibin HE, Yachen TANG. Optimization of Energy Storage Profit Considering Carbon Emission Constraints and Market Participation [J]. Electric Power, 2025, 58(3): 204-212. |
[9] | Wenjun XU, Gang MA, Yunting YAO, Yuxiang MENG, Weikang LI. Multi-energy Optimal Scheduling of Industrial Parks Considering Green Certificate - Carbon Trading Mechanism and Hydrogen Compressed Natural Gas [J]. Electric Power, 2025, 58(2): 154-163. |
[10] | Jiang LI, Yuanzheng FAN, Bo LIU. A Source-load Low Carbon Optimization Methodology Considering Carbon Responsibility for Direct Carbon Emissions from Cement Plants [J]. Electric Power, 2025, 58(1): 141-152. |
[11] | Lingling TAN, Wei TANG, Dongqing CHU, Jingrui LI, Yumin ZHANG, Xingquan JI. Optimal Dispatching of Electric-Heat-Hydrogen Integrated Energy System Based on Stackelberg Game [J]. Electric Power, 2024, 57(9): 136-145. |
[12] | Guanjun FU, Fuqiang ZHANG, Peng XIA, Junshu FENG, Jinfang ZHANG. Functional Orientation and Development Prospect of Natural Gas Power Generation in New Power System [J]. Electric Power, 2024, 57(8): 67-74. |
[13] | Dong WANG, Jingli FENG, Da LI, Jingwei NIU, Jun LI. A Credible Monitoring Model for Carbon Emissions in Industrial Parks Based on Blockchain Technology [J]. Electric Power, 2024, 57(7): 182-187. |
[14] | Hanxiao LIU, Sike SHAN, Shuzhou WEI, Liyuan YU, Shuai WANG, Meiling LIU, Ying CUI. Life-Cycle Carbon Footprint Assessment of Coal-fired Power Generation [J]. Electric Power, 2024, 57(7): 227-237. |
[15] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Wenye WANG, Shuai ZHANG, Fengzhan ZHAO. Optimal Allocation of Hybrid Energy Storage in Low-Voltage Distribution Networks with Incentive-based Demand Response [J]. Electric Power, 2024, 57(6): 90-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||