Electric Power ›› 2021, Vol. 54 ›› Issue (8): 35-42,51.DOI: 10.11930/j.issn.1004-9649.202007160
Previous Articles Next Articles
HU Chong1, XU Bin1, ZHEN Chao2, ZHAO Xinde1, WANG Xin3, TANG Xingyong3
Received:
2020-07-30
Revised:
2020-12-20
Online:
2021-08-05
Published:
2021-08-05
Supported by:
HU Chong, XU Bin, ZHEN Chao, ZHAO Xinde, WANG Xin, TANG Xingyong. A Non-invasive Identification Method for Sensitive Load Based on Voltage Sag Monitoring Data[J]. Electric Power, 2021, 54(8): 35-42,51.
[1] 吴丹岳. 基于直觉模糊粗糙集相似度的电压暂降源定位方法[J]. 中国电力, 2017, 50(3):128-132, 136 WU Danyue. Voltage sag source locating method based on similarity measure of intuitionistic fuzzy rough sets[J]. Electric Power, 2017, 50(3):128-132, 136 [2] 卢文清, 常乾坤, 贾东强, 等. 设备侧电压暂降严重程度评估方法研究[J]. 电力自动化设备, 2019, 39(1):175-182 LU Wenqing, CHANG Qiankun, JIA Dongqiang, et al. Research on evaluation methods of voltage sag severity for equipment side[J]. Electric Power Automation Equipment, 2019, 39(1):175-182 [3] IEEE guide for voltage sag indices:IEEE Std 1564-2014[S]. 2014. [4] MA Y Q, XIAO X Y, WANG Y, et al. Perceived utility of premium power by high-tech manufacturers[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(2):287-295. [5] MA Y Q, XIAO X Y, WANG Y. Investment strategy and multi-objective optimization scheme for premium power under the background of the opening of electric retail side[J]. Energies, 2018, 11(8):2135. [6] 陈韵竹, 刘阳, 黄聃喆, 等. 电压暂降损失风险规避机制与保险方案研究[J]. 电力科学与技术学报, 2019, 34(2):97-105 CHEN Yunzhu, LIU Yang, HUANG Danzhe, et al. Research of loss risk evading mechanism and insurance scheme caused by voltage sags[J]. Journal of Electric Power Science and Technology, 2019, 34(2):97-105 [7] 陶顺, 肖湘宁, 檀跃亭, 等. 多运行方式多网络结构系统电压暂降的随机预估及缓解措施[J]. 中国电力, 2008, 41(4):30-34 TAO Shun, XIAO Xiangning, TAN Yueting, et al. Stochastic assessment of voltage sags in distribution system with different operation modes and network configures[J]. Electric Power, 2008, 41(4):30-34 [8] 赵国亮, 陈维江, 龙云波, 等. 北京优质电力园区优质供电方案[J]. 中国电力, 2016, 49(7):60-64 ZHAO Guoliang, CHEN Weijiang, LONG Yunbo, et al. Research on optimum power supply scheme for beijing premium power park project[J]. Electric Power, 2016, 49(7):60-64 [9] 张志强, 唐晓骏, 李晓珺, 等. 高电压大容量实验基地接入电网的电压暂降影响研究[J]. 中国电力, 2016, 49(8):17-20, 53 ZHANG Zhiqiang, TANG Xiaojun, LI Xiaojun, et al. Research on voltage sags influence of high voltage level and bulk experiment base access to power system[J]. Electric Power, 2016, 49(8):17-20, 53 [10] 王毅, 张宁, 康重庆, 等. 电力用户行为模型:基本概念与研究框架[J]. 电工技术学报, 2019, 34(10):2056-2068 WANG Yi, ZHANG Ning, KANG Chongqing, et al. Electrical consumer behavior model:Basic concept and research framework[J]. Transactions of China Electrotechnical Society, 2019, 34(10):2056-2068 [11] BOLLEN M H. Understanding power quality problems:voltage sag and interruption[M]. Wiley Press, 1999. [12] 王克星, 宋政湘, 陈德桂, 等. 基于小波变换的配电网电压暂降的干扰源辨识[J]. 中国电机工程学报, 2003, 23(6):29-34, 54 WANG Kexing, SONG Zhengxiang, CHEN Degui, et al. Interference source identification of voltage sag in distribution system based on wavelet transform[J]. Proceedings of the CSEE, 2003, 23(6):29-34, 54 [13] LU S D, SIAN H W, WANG M H, et al. Application of extension neural network with discrete wavelet transform and parseval's theorem for power quality analysis[J]. Applied Sciences, 2019, 9(11):2228. [14] 王慧, 冯金顺. 基于离散小波变换的图像感知对比度增强数学模型构建[J]. 现代电子技术, 2020, 43(19):19-22 WANG Hui, FENG Jinshun. Construction of discrete wavelet transform based mathematical model for image perception contrast enhan-cement[J]. Modern Electronics Technique, 2020, 43(19):19-22 [15] DOUSTMOHAMMADI H, FOROUD A A. A novel flicker detection method for vertical axis wind turbine using two-dimensional discrete wavelet transform[J]. International Transactions on Electrical Energy Systems, 2020, 30(11):e12584. [16] MAAN P, SINGH H, KUMARI A C. Symmetric cryptosystem to secure images utilizing chaotic deterministic phase mask in Fresnel transform domain employing singular value decomposition[J]. Procedia Computer Science, 2020, 167:860-869. [17] XIAO X, HU W, ZHENG Z, et al. An Adaptive approach for voltage sag automatic segmentation[J]. Energies, 2018, 11(12):3519. [18] SHA H Y, MEI F, ZHANG C Y, et al. Identification method for voltage sags based on K-means-singular value decomposition and least squares support vector machine[J]. Energies, 2019, 12(6):1137. [19] 徐永海, 李晨懿, 汪坤, 等. 低压变频器对电网电压暂降耐受特性及兼容性研究[J]. 电工技术学报, 2019, 34(10):2216-2229 XU Yonghai, LI Chenyi, WANG Kun, et al. Compatibility between low voltage variable-frequency drives and voltage sags in distribution systems[J]. Transactions of China Electrotechnical Society, 2019, 34(10):2216-2229 [20] 刘书铭, 吴亚盆, 张博, 等. PC机电压暂降敏感度试验研究[J]. 电测与仪表, 2019, 56(11):32-36, 48 LIU Shuming, WU Yapen, ZHANG Bo, et al. Experimental research on sensitivity of PC to voltage sags[J]. Electrical Measurement & Instrumentation, 2019, 56(11):32-36, 48 [21] 莫文雄, 吴亚盆, 许中, 等. 典型PLC电压暂降耐受性能实验研究[J]. 华北电力大学学报(自然科学版), 2018, 45(3):53-59, 66 MO Wenxiong, WU Yapen, XU Zhong, et al. Research on tolerance characteristics of typical PLC to voltage sags[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(3):53-59, 66 [22] 徐永海, 兰巧倩, 洪旺松. 交流接触器对电压暂降敏感度的试验研究[J]. 电工技术学报, 2015, 30(21):136-146 XU Yonghai, LAN Qiaoqian, HONG Wangsong. Experimental research on AC contactor sensitivity during voltage sags[J]. Transactions of China Electrotechnical Society, 2015, 30(21):136-146 [23] 肖先勇, 赵禾畦, 李成鑫. 园区级-设备级电压暂降协同治理优化方案及其投融资策略[J]. 电力自动化设备, 2020, 40(5):157-165 XIAO Xianyong, ZHAO Heqi, LI Chengxin. Optimal cooperative governance scheme of park-level and equipment-level voltage sag and its investment and financing strategy[J]. Electric Power Automation Equipment, 2020, 40(5):157-165 [24] 周凯, 郭倩雯, 栾乐, 等. 可调速驱动设备暂态电压扰动耐受能力快速评估方法[J]. 中国测试, 2020, 46(7):75-82 ZHOU Kai, GUO Qianwen, LUAN Le, et al. Fast evaluation method of transient voltage disturbance tolerance of adjustable speed drive[J]. China Measurement & Test, 2020, 46(7):75-82 [25] 唐艳林, 杨洪耕. 基于最大熵原理的敏感负荷电压暂降故障频次研究方法[J]. 电测与仪表, 2015, 52(18):27-30 TANG Yanlin, YANG Honggeng. Study on the fault frequency of sensitive load due to voltage sags based on maximum entropy principle[J]. Electrical Measurement & Instrumentation, 2015, 52(18):27-30 |
[1] | Shilong CHEN, Tao WU, Cheng GUO, Guihong BI, Yongliang QIAN. Harmonic Responsibility Division of Grid Asynchronous Monitoring Data Scenarios Based on Correlation Analysis [J]. Electric Power, 2025, 58(1): 15-25. |
[2] | Shilong CHEN, Tao WU, Cheng GUO, Zirui ZHANG, Jinghao SUN. Division of Multi-harmonic Responsibilities Based on DBSCAN Clustering and Interval Regression [J]. Electric Power, 2024, 57(2): 138-148. |
[3] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. |
[4] | ZHAO Yangyang, LIU Lan, ZHAO Wei, ZENG Shuang, LIANG Anqi, WANG Hanqiu, MA Kai. Heat Pump Temperature Trajectory Planning Algorithm for Bus Voltage Sag Suppression [J]. Electric Power, 2023, 56(5): 99-107. |
[5] | Long ZHAO, Guanru WEN, Zhicheng LIU, Peng YUAN, Xinsheng DONG. Transmission Tower Tilt State Recognition Based on Parameter Optimization of VMD-SVD and LSTM [J]. Electric Power, 2023, 56(12): 217-226, 237. |
[6] | ZHU Mingxing, LU Xuan, ZHANG Huaying, WANG Qing. Safe Operation Area of Energy-Storage-Free Dynamic Voltage Restorer [J]. Electric Power, 2022, 55(8): 157-164. |
[7] | LV Jinbing, YANG Guochao, FAN Xingguan. A Voltage Sag Prevention Index Based on Virtual Upper and Lower Limit Tolerance Curve [J]. Electric Power, 2022, 55(7): 59-66,73. |
[8] | ZHOU Wen, LIANG Jifeng, JIAO Yadong, LI Tiecheng, LU Yanqiao, LIU Yong. Error Analysis and Correction of Voltage Sag Measurement for Capacitor Voltage Transformer [J]. Electric Power, 2022, 55(7): 49-58. |
[9] | LIU Haitao, YE Xiaoyi, Lü Ganyun, YUAN Huajun, GENG Zongpu. Identification of Voltage Sag Source in Distribution Network Based on BAS-SVM [J]. Electric Power, 2022, 55(5): 128-133. |
[10] | WANG Jian, YI Shuhui, LIU Junjie, LIU Jian. Non-intrusive Industrial Load Identification Based on Random Forest Algorithm and Steady-State Waveform [J]. Electric Power, 2022, 55(2): 82-89. |
[11] | HE Yedan, XIA Xiangyang, YIN Xu, DENG Wenhua, WANG Can, XIONG Fuqiang, ZHOU Hanliang. MMC Coordinated Control Strategy for Maximum Power Output Under Asymmetric Voltage Sag [J]. Electric Power, 2022, 55(12): 160-167. |
[12] | LI Pei, YU Yongjun, MA Zhiquan, CAI Chongkai. High Quality Power Supply Service Mode Considering Service Life of Mitigation Equipment Against Voltage Sag [J]. Electric Power, 2022, 55(12): 147-159. |
[13] | LU Chengyu, HUANG Hongyang, XU Qunwei, HE Yujun, WANG Ying. Cost Estimation for Voltage Sag Control Based on Multidimensional Characteristics and Hausdorff Distance [J]. Electric Power, 2021, 54(8): 11-18. |
[14] | RUAN Ying, YE Xingwen, DENG Mingfeng, WANG Xing, YANG Linyu, SHU Qin. A New Online Monitoring Method for MOA Based on A-VMD and A-SVD [J]. Electric Power, 2021, 54(10): 177-185. |
[15] | ZHANG Bo, TANG Yuzheng, DAI Shuangyin, CHEN Yunzhu, WANG Panpan, XIAO Xianyong. Value-added Service Strategy of Voltage Sag Governance for Mutual Satisfaction of Power Supply Companies and Power Users [J]. Electric Power, 2020, 53(11): 50-59. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 654
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||