Electric Power ›› 2025, Vol. 58 ›› Issue (11): 62-71, 87.DOI: 10.11930/j.issn.1004-9649.202504063
• Research on Scheduling, Control and Reliability of Regional Integrated Energy Systems with High Proportion of New Energy • Previous Articles Next Articles
CAO Shuyi1(
), TAO Hongzhu2, WANG Qiang3, LI Xiaofei4, WANG Leibao5, GUO Sen1(
)
Received:2025-04-25
Revised:2025-05-09
Online:2025-12-01
Published:2025-11-28
Supported by:CAO Shuyi, TAO Hongzhu, WANG Qiang, LI Xiaofei, WANG Leibao, GUO Sen. Comprehensive Evaluation of Flexibility Resource Regulation Capability in New Energy Power Systems Based on Hybrid Multi-attribute Decision-making Methods[J]. Electric Power, 2025, 58(11): 62-71, 87.
| 目标层 | 一级指标 | 二级指标 | 类型 | 编号 | ||||
| 灵活性资 源调节能力 | 经济性 指标 | 新建或改建投资成本 | 负向指标 | S1 | ||||
| 可变成本 | 负向指标 | S2 | ||||||
| 使用年限 | 正向指标 | S3 | ||||||
| 技术性 指标 | 爬坡速率 | 正向指标 | S4 | |||||
| 启停时间 | 负向指标 | S5 | ||||||
| 机组调节范围 | 正向指标 | S6 | ||||||
| 调节时间尺度 | 正向指标 | S7 |
Table 1 Comprehensive evaluation indicators for regulation capability of flexibility resources in power systems
| 目标层 | 一级指标 | 二级指标 | 类型 | 编号 | ||||
| 灵活性资 源调节能力 | 经济性 指标 | 新建或改建投资成本 | 负向指标 | S1 | ||||
| 可变成本 | 负向指标 | S2 | ||||||
| 使用年限 | 正向指标 | S3 | ||||||
| 技术性 指标 | 爬坡速率 | 正向指标 | S4 | |||||
| 启停时间 | 负向指标 | S5 | ||||||
| 机组调节范围 | 正向指标 | S6 | ||||||
| 调节时间尺度 | 正向指标 | S7 |
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本/(元·kW–1) | 650 | |||||||
| 可变成本/(元·(kW·h)–1) | ||||||||
| 使用年限/年 | 20 | 30 | 80 | 12 | ||||
| 爬坡速率/(Pn·min–1) | 5% | 8% | 20% | 100% | ||||
| 启停时间/h | 4.500 | 2.000 | 0.420 | 0.017 | ||||
| 机组调节范围/% | 70 | 80 | 200 | 200 | ||||
| 时间尺度调节能力 | 2 | 1 | 2 | 1 |
Table 2 Initial data of flexibility resource evaluation indicators
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本/(元·kW–1) | 650 | |||||||
| 可变成本/(元·(kW·h)–1) | ||||||||
| 使用年限/年 | 20 | 30 | 80 | 12 | ||||
| 爬坡速率/(Pn·min–1) | 5% | 8% | 20% | 100% | ||||
| 启停时间/h | 4.500 | 2.000 | 0.420 | 0.017 | ||||
| 机组调节范围/% | 70 | 80 | 200 | 200 | ||||
| 时间尺度调节能力 | 2 | 1 | 2 | 1 |
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本 | ||||||||
| 可变成本 | ||||||||
| 使用年限 | ||||||||
| 爬坡速率 | ||||||||
| 启停时间 | ||||||||
| 机组调节范围 | ||||||||
| 调节时间尺度 |
Table 3 Normalization of flexibility resource indicators
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本 | ||||||||
| 可变成本 | ||||||||
| 使用年限 | ||||||||
| 爬坡速率 | ||||||||
| 启停时间 | ||||||||
| 机组调节范围 | ||||||||
| 调节时间尺度 |
| 编号 | 指标 | 熵值 | 权重 | 排序 | ||||
| S1 | 固定成本 | 6 | ||||||
| S2 | 可变成本 | 7 | ||||||
| S3 | 使用年限 | 3 | ||||||
| S4 | 爬坡速率 | 1 | ||||||
| S5 | 启停时间 | 5 | ||||||
| S6 | 机组调节范围 | 4 | ||||||
| S7 | 调节时间尺度 | 2 |
Table 4 Weights and rankings of flexibility resource regulation capability indicators
| 编号 | 指标 | 熵值 | 权重 | 排序 | ||||
| S1 | 固定成本 | 6 | ||||||
| S2 | 可变成本 | 7 | ||||||
| S3 | 使用年限 | 3 | ||||||
| S4 | 爬坡速率 | 1 | ||||||
| S5 | 启停时间 | 5 | ||||||
| S6 | 机组调节范围 | 4 | ||||||
| S7 | 调节时间尺度 | 2 |
| 方案 | K+ | K– | f(Ki) | 排序 | ||||
| 灵活性火电 | 0.456 | 2.058 | 0.438 | 3 | ||||
| 气电 | 0.285 | 1.286 | 0.274 | 4 | ||||
| 抽水蓄能 | 0.634 | 2.862 | 0.610 | 2 | ||||
| 电化学储能 | 0.702 | 3.169 | 0.675 | 1 |
Table 5 Evaluation results of flexibility resource regulation capability based on the MARCOS model
| 方案 | K+ | K– | f(Ki) | 排序 | ||||
| 灵活性火电 | 0.456 | 2.058 | 0.438 | 3 | ||||
| 气电 | 0.285 | 1.286 | 0.274 | 4 | ||||
| 抽水蓄能 | 0.634 | 2.862 | 0.610 | 2 | ||||
| 电化学储能 | 0.702 | 3.169 | 0.675 | 1 |
| 1 | 孙怡文, 邢海军, 施怡沁, 等. 新型电力系统多时间尺度充裕性评估及量化分析[J]. 智慧电力, 2025, 53 (6): 35- 42. |
| SUN Yiwen, XING Haijun, SHI Yiqin, et al. Multi-time scale adequacy assessment and quantitative analysis of new-type electric power systems[J]. Smart Power, 2025, 53 (6): 35- 42. | |
| 2 | 张爱军, 刘石川, 慕腾, 等. 新能源发电富集地区输电系统规划方案的综合评价[J]. 智慧电力, 2025, 53 (2): 16- 24. |
| ZHANG Aijun, LIU Shichuan, MU Teng, et al. Comprehensive evaluation of transmission system planning schemes in renewable energy generation enrichment region[J]. Smart Power, 2025, 53 (2): 16- 24. | |
| 3 | 董昱, 孙大雁, 许丹, 等. 新型电力系统电力电量平衡的挑战、应对与展望[J]. 中国电机工程学报, 2025, 45 (6): 2039- 2057. |
| DONG Yu, SUN Dayan, XU Dan, et al. Challenges, response and prospects for power balance in new power systems[J]. Proceedings of the CSEE, 2025, 45 (6): 2039- 2057. | |
| 4 | 张凯, 袁家海, 丁保迪, 等. 新型电力系统灵活性资源提升效益评估[J]. 气候变化研究进展, 2024, 20 (3): 316- 326. |
| ZHANG Kai, YUAN Jiahai, DING Baodi, et al. Evaluation of flexibility enhancement benefits for the new power system[J]. Climate Change Research, 2024, 20 (3): 316- 326. | |
| 5 |
ZHANG Y Q, CHEN Z W, ZHOU J H, et al. Reliability analysis of power system considering flexibility resources[J]. Journal of Physics: Conference Series, 2023, 2532 (1): 012011.
|
| 6 |
AKRAMI A, DOOSTIZADEH M, AMINIFAR F. Power system flexibility: an overview of emergence to evolution[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (5): 987- 1007.
|
| 7 |
GHARIBVAND H, GHAREHPETIAN G B, ANVARI-MOGHADDAM A. A survey on microgrid flexibility resources, evaluation metrics and energy storage effects[J]. Renewable and Sustainable Energy Reviews, 2024, 201, 114632.
|
| 8 | 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9- 20. |
| LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9- 20. | |
| 9 | MA J J, LIU Y K, ZHANG S H, et al. Comprehensive probabilistic assessment on capacity adequacy and flexibility of generation resources[J]. International Journal of Electrical Power & Energy Systems, 2023, 145, 108677. |
| 10 |
LANNOYE E, FLYNN D, O'MALLEY M. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27 (2): 922- 931.
|
| 11 | 杨策, 孙伟卿, 韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47 (1): 338- 349. |
| YANG Ce, SUN Weiqing, HAN Dong. Power system flexibility evaluation considering renewable energy accommodation[J]. Power System Technology, 2023, 47 (1): 338- 349. | |
| 12 | 周策, 闫俊, 王浩霖, 等. 火电机组调节能力在线评估技术应用分析[J]. 山西电力, 2023 (1): 61- 64. |
| ZHOU Ce, YAN Jun, WANG Haolin, et al. Application analysis of on-line evaluation technology for regulating capacity of thermal power units[J]. Shanxi Electric Power, 2023 (1): 61- 64. | |
| 13 | 施涛, 司学振, 饶宇飞, 等. 考虑聚合效应的多点分布式储能系统灵活性评价方法研究[J]. 电网与清洁能源, 2019, 35 (12): 67- 73. |
| SHI Tao, SI Xuezhen, RAO Yufei, et al. Research on flexibility evaluation method of multi-point distributed energy storage system considering aggregation effect[J]. Power System and Clean Energy, 2019, 35 (12): 67- 73. | |
| 14 | 黄鸣宇, 王鹏宇, 张庆平, 等. 计及调节性能及经济性的需求响应资源参与电网调频综合评价[J]. 武汉大学学报(工学版), 2022, 55 (8): 822- 832. |
| HUANG Mingyu, WANG Pengyu, ZHANG Qingping, et al. Comprehensive evaluation of power grid frequency regulation with the participation of demand response resources in consideration of control performance and economy[J]. Engineering Journal of Wuhan University, 2022, 55 (8): 822- 832. | |
| 15 | 王志杰, 陈文, 朱晓星, 等. 基于数据驱动的火电机组灵活性综合评价方法及应用[J]. 现代电力, 2024, 41 (4): 667- 672. |
| WANG Zhijie, CHEN Wen, ZHU Xiaoxing, et al. Comprehensive evaluation method for thermal power unit flexibility based on data-driven and its application[J]. Modern Electric Power, 2024, 41 (4): 667- 672. | |
| 16 | 董军, 彭诗程, 包阿茹汗, 等. 新型电力系统火电综合价值分析与评估[J]. 重庆理工大学学报(自然科学), 2022, 36 (12): 259- 268. |
| DONG Jun, PENG Shicheng, BAO Aruhan, et al. Analysis and evaluation of comprehensive value of thermal power in the new power system[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36 (12): 259- 268. | |
| 17 | 王敏, 邹婕, 王惠琳, 等. 基于改进的AHP-CRITIC-MARCOS配电网设备风险评估方法[J]. 电力系统保护与控制, 2023, 51 (3): 164- 172. |
| WANG Min, ZOU Jie, WANG Huilin, et al. Improved AHP-CRITIC-MARCOS-based risk assessment method for distribution network equipment[J]. Power System Protection and Control, 2023, 51 (3): 164- 172. | |
| 18 | 陈星彤, 张宁, 王轶楠, 等. 基于混合赋权和MARCOS模型的低碳园区综合效益评价研究[J]. 智慧电力, 2024, 52 (5): 23- 30. |
| CHEN Xingtong, ZHANG Ning, WANG Yinan, et al. Comprehensive benefit evaluation of low-carbon industrial parks based on combination weighting and MARCOS model[J]. Smart Power, 2024, 52 (5): 23- 30. | |
| 19 | 李勇, 吴含欣, 李婵虓, 等. 考虑多维气象指标的配电网短期负荷预测[J]. 智慧电力, 2025, 53 (6): 116- 123. |
| LI Yong, WU Hanxin, LI Chanxiao, et al. Short-term load forecasting for distribution networks considering multidimensional meteorological indicators[J]. Smart Power, 2025, 53 (6): 116- 123. | |
| 20 | 章穗, 张梅, 迟国泰. 基于熵权法的科学技术评价模型及其实证研究[J]. 管理学报, 2010, 7 (1): 34- 42. |
| ZHANG Sui, ZHANG Mei, CHI Guotai. The science and technology evaluation model based on entropy weight and empirical research during the 10th five-year of China[J]. Chinese Journal of Management, 2010, 7 (1): 34- 42. | |
| 21 | 付忠广, 刘炳含, 刘璐, 等. 融合熵权TOPSIS法与灰色关联度法的火电机组综合评价方法[J]. 华北电力大学学报(自然科学版), 2018, 45 (6): 68- 75,83. |
| FU Zhongguang, LIU Binghan, LIU Lu, et al. Comprehensive evaluation method of thermal power unit on basis of entropy weight TOPSIS method and grey relational grade method[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45 (6): 68- 75,83. | |
| 22 | 艾欣, 秦珺晗, 胡寰宇, 等. 基于最优最劣法-熵权-逼近理想解排序法的电网安全与效益综合评价[J]. 现代电力, 2021, 38 (1): 60- 68. |
| AI Xin, QIN Junhan, HU Huanyu, et al. Comprehensive evaluation of power grid security and benefit based on BWM entropy weight TOPSIS method[J]. Modern Electric Power, 2021, 38 (1): 60- 68. | |
| 23 | 郭杉, 田苗, 田智, 等. 基于改进TOPSIS模型的配电台区电压质量评估方法[J]. 内蒙古电力技术, 2023, 41 (1): 45- 51. |
| GUO Shan, TIAN Miao, TIAN Zhi, et al. Evaluation method of voltage quality in distribution station area based on improved TOPSIS model[J]. Inner Mongolia Electric Power, 2023, 41 (1): 45- 51. | |
| 24 | 贾开华, 于云霞, 范秀波, 等. 基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价[J]. 中国电力, 2023, 56 (7): 228- 238. |
| JIA Kaihua, YU Yunxia, FAN Xiubo, et al. Multi-criteria comprehensive evaluation of multi-energy complementary system based on AHP-EWM and TOPSIS method[J]. Electric Power, 2023, 56 (7): 228- 238. | |
| 25 | 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56 (5): 193- 202. |
| ZHAO Yuanshang, LIN Weifang. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson's correlation coefficient[J]. Electric Power, 2023, 56 (5): 193- 202. | |
| 26 | STEVIĆ Ž, PAMUČAR D, PUŠKA A, et al. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS)[J]. Computers & Industrial Engineering, 2020, 140, 106231. |
| 27 | 梁小侠, 谢军, 田永川, 等. 基于组合权重和改进的MARCOS配电网设备风险评估方法[J]. 电工技术, 2024 (5): 117- 121. |
| LIANG Xiaoxia, XIE Jun, TIAN Yongchuan, et al. Assessment of distribution network equipment risks based on combined weighting and modified MARCOS[J]. Electric Engineering, 2024 (5): 117- 121. | |
| 28 | 许宗鑫, 崔杨, 岳飞, 等. 考虑等效寿命损耗及多维度效益的电网侧储能系统容量优化配置[J]. 东北电力大学学报, 2025, 45 (1): 73- 82. |
| XU Zongxin, CUI Yang, YUE Fei, et al. Optimal capacity configuration of grid-side energy storage system considering equivalent life loss and multi-dimensional benefits[J]. Journal of Northeast Electric Power University, 2025, 45 (1): 73- 82. | |
| 29 | 林毅, 林威, 吴威, 等. 电化学储能和抽水蓄能电站参与多市场联合运行价值分析[J]. 中国电力, 2023, 56 (7): 175- 185. |
| LIN Yi, LIN Wei, WU Wei, et al. Analysis on operation value of electrochemical energy storage and pumped storage participating in a joint market[J]. Electric Power, 2023, 56 (7): 175- 185. | |
| 30 |
徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40 (12): 10- 18.
|
|
XU Ruochen, ZHANG Jiangtao, LIU Mingyi, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40 (12): 10- 18.
|
|
| 31 | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50 (8): 24- 29. |
| WEN Jun, LIU Nan, PEI Jie, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50 (8): 24- 29. | |
| 32 | 张大海, 孙锴, 史一茹, 等. 考虑灵活资源及模数驱动方法的电力系统调度方法综述[J]. 高电压技术, 2024, 50 (1): 42- 54. |
| ZHANG Dahai, SUN Kai, SHI Yiru, et al. Overview of power system dispatching methods considering flexible resources and model-data driven[J]. High Voltage Engineering, 2024, 50 (1): 42- 54. | |
| 33 | 冷仙, 曾源, 周键, 等. 基于熵权TOPSIS法的西南自然保护区景观保护成效评价[J]. 生态学报, 2023, 43 (3): 1040- 1053. |
| LENG Xian, ZENG Yuan, ZHOU Jian, et al. Landscape conservation effectiveness assessment of nature reserves based on entropy weight-TOPSIS in Southwest China[J]. Acta Ecologica Sinica, 2023, 43 (3): 1040- 1053. | |
| 34 | 张家明, 赵迪斐, 郭英海, 等. 基于模糊变异熵权法的页岩气藏多参数评价: 以四川盆地武隆地区F-2井为例[J]. 河南理工大学学报(自然科学版), 2024, 43 (6): 57- 68, 81. |
| ZHANG Jiaming, ZHAO Difei, GUO Yinghai, et al. Multiple parameter evaluation of shale gas reservoirs based on a fuzzy entropy weight and coefficient variation method: a case of well F-2 in Wulong Area, Sichuan Basin[J]. Journal of Henan Polytechnic University (Natural Science), 2024, 43 (6): 57- 68, 81. | |
| 35 | 李梓嘉, 周佳, 彭方旭. 基于熵权TOPSIS法的抽水蓄能电站与光伏配套开发综合评价[J]. 水电能源科学, 2025, 43 (3): 205- 209, 195. |
| LI Zijia, ZHOU Jia, PENG Fangxu. Comprehensive evaluation of integrated development of pumped storage power stations and photovoltaic systems based on entropy weight TOPSIS method[J]. Water Resources and Power, 2025, 43 (3): 205- 209, 195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
