Electric Power ›› 2024, Vol. 57 ›› Issue (4): 171-181.DOI: 10.11930/j.issn.1004-9649.202311116
• Power System • Previous Articles Next Articles
Maolan PENG1(), Lei FENG1(
), Yu WANG2(
), Liqing XU2(
), Wei ZHAO2(
), Chunyi GUO2(
)
Received:
2023-11-22
Accepted:
2024-02-20
Online:
2024-04-23
Published:
2024-04-28
Supported by:
Maolan PENG, Lei FENG, Yu WANG, Liqing XU, Wei ZHAO, Chunyi GUO. DC Overvoltage Suppression Strategy for MMC-MTDC Based on Bridge Arm Modulated Wave Adjustment[J]. Electric Power, 2024, 57(4): 171-181.
系统参数 | 数值 | |
额定直流电压/kV | ±800 | |
4个换流站额定直流功率/MW | 10000 | |
光伏场站额定有功功率/MW | 7500 | |
水电站额定有功功率/MW | 2500 | |
直流线路I长度/km | 2000 | |
直流线路Ⅱ长度/km | 400 | |
直流线路电阻R0/(Ω·km–1) | 0.0042 | |
直流线路电感L0/(H·km–1) | 0.0008 | |
直流线路电容C0/(μF·km–1) | 0.0065 | |
受端交流系统短路比 | 5 | |
单个换流阀额定直流电压/kV | 400 | |
单个换流阀额定直流功率/kW | 1250 | |
单个换流阀的桥臂子模块个数 | 220 | |
子模块额定电容电压/kV | 2.1 |
Table 1 System Parameters
系统参数 | 数值 | |
额定直流电压/kV | ±800 | |
4个换流站额定直流功率/MW | 10000 | |
光伏场站额定有功功率/MW | 7500 | |
水电站额定有功功率/MW | 2500 | |
直流线路I长度/km | 2000 | |
直流线路Ⅱ长度/km | 400 | |
直流线路电阻R0/(Ω·km–1) | 0.0042 | |
直流线路电感L0/(H·km–1) | 0.0008 | |
直流线路电容C0/(μF·km–1) | 0.0065 | |
受端交流系统短路比 | 5 | |
单个换流阀额定直流电压/kV | 400 | |
单个换流阀额定直流功率/kW | 1250 | |
单个换流阀的桥臂子模块个数 | 220 | |
子模块额定电容电压/kV | 2.1 |
换流站 | 直流过电压 理论计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 894 | 892 | 0.2 | |||
逆变站1 | 845 | 838 | 0.8 | |||
逆变站2 | 824 | 844 | 2.4 |
Table 2 Comparison between theoretical calculation and simulation values of DC overvoltage of all converters under AC fault of inverter station 1
换流站 | 直流过电压 理论计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 894 | 892 | 0.2 | |||
逆变站1 | 845 | 838 | 0.8 | |||
逆变站2 | 824 | 844 | 2.4 |
换流站 | 直流过电压理论 计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 932 | 937 | 0.5 | |||
逆变站1 | 855 | 882 | 3.1 | |||
逆变站2 | 861 | 878 | 1.9 |
Table 3 Comparison between theoretical calculation and simulation values of DC overvoltage of all converters under AC faults of inverter station 2
换流站 | 直流过电压理论 计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 932 | 937 | 0.5 | |||
逆变站1 | 855 | 882 | 3.1 | |||
逆变站2 | 861 | 878 | 1.9 |
1 | 赵畹君. 高压直流输电工程技术[M]. 2版. 北京: 中国电力出版社, 2011. |
2 | 李惠玲, 王曦, 高剑, 等. 新型电力系统背景下西部送端直流电网方案构建[J]. 中国电力, 2023, 56 (5): 12- 21. |
LI Huiling, WANG Xi, Gao Jian, et al. Scheme construction for sending end DC grids in western China under the background of new power system[J]. Electric Power, 2023, 56 (5): 12- 21. | |
3 | 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. |
4 | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56 (4): 17- 27. |
XU Wenzhe, ZHANG Zheren, XU Zheng. A hybrid HVDC topology suitable for large-scale pure clean energy power base transmission[J]. Electric Power, 2023, 56 (4): 17- 27. | |
5 | 邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景[J]. 南方电网技术, 2022, 16 (3): 1- 7. |
ZOU Changyue, WEI Ronghui, FENG Junjie, et al. Development status and application prospect of VSC-HVDC[J]. Southern Power System Technology, 2022, 16 (3): 1- 7. | |
6 | 杨仁炘, 施刚, 蔡旭, 等. 风电-多端柔直送出系统电压源型控制[J]. 中国电机工程学报, 2020, 40 (5): 1498- 1509. |
YANG Renxin, SHI Gang, CAI Xu, et al. Voltage source control of VSC-MTDC systems with wind farm integration[J]. Proceedings of the CSEE, 2020, 40 (5): 1498- 1509. | |
7 | 邓银秋, 汪震, 韩俊飞, 等. 适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J]. 中国电机工程学报, 2020, 40 (8): 2406- 2416. |
DENG Yinqiu, WANG Zhen, HAN Junfei, et al. Control strategy on optimal redistribution of unbalanced power for offshore wind farms integrated VSC-MTDC[J]. Proceedings of the CSEE, 2020, 40 (8): 2406- 2416. | |
8 |
张福轩, 郭贤珊, 汪楠楠, 等. 接入新能源孤岛系统的双极柔性直流系统盈余功率耗散策略[J]. 电力系统自动化, 2020, 44 (5): 154- 160.
DOI |
ZHANG Fuxuan, GUO Xianshan, WANG Nannan, et al. Surplus power dissipation strategy for bipolar VSC-HVDC system with integration of islanded renewable energy generation system[J]. Automation of Electric Power Systems, 2020, 44 (5): 154- 160.
DOI |
|
9 |
JIANG S Q, XIN Y C, LI G Q, et al. A novel DC fault ride-through method for wind farms connected to the grid through bipolar MMC-HVDC transmission[J]. IEEE Transactions on Power Delivery, 2020, 35 (6): 2937- 2950.
DOI |
10 | 杨仁炘, 张琛, 蔡旭, 等. 海上风电-柔直并网系统自同步电压源控制与电网故障穿越[J]. 中国电机工程学报, 2022, 42 (13): 4823- 4835. |
YANG Renxin, ZHANG Chen, CAI Xu, et al. Voltage source control and fault ride-through of VSC-HVDC systems with offshore wind farm integration[J]. Proceedings of the CSEE, 2022, 42 (13): 4823- 4835. | |
11 | TZELEPIS D, ROUSIS A O, DYSKO A, et al. Enhanced DC voltage control strategy for fault management of a VSC-HVDC connected offshore wind farm[C]//5th IET International Conference on Renewable Power Generation (RPG) 2016. London, UK. Institution of Engineering and Technology, 2016. |
12 | 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42 (11): 3698- 3707. |
GUO Xianshan, ZHOU Yang, MEI Nian, et al. Construction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42 (11): 3698- 3707. | |
13 | ABDALRAHMAN A, ISABEGOVIC E. DolWin1 - challenges of connecting offshore wind farms[C]//2016 IEEE International Energy Conference (ENERGYCON). Leuven. IEEE, 2016: 1–10. |
14 | 许彬, 高冲, 张静. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越的新型直流耗能装置拓扑[J]. 中国电机工程学报, 2021, 41 (1): 88- 97, 400. |
XU Bin, GAO Chong, ZHANG Jing. A novel DC chopper topology for grid side fault ride through in VSC-HVDC based offshore wind power connection[J]. Proceedings of the CSEE, 2021, 41 (1): 88- 97, 400. | |
15 | 谢晔源, 姚宏洋, 李海英, 等. 用于VSC-HVDC系统的模块化直串式直流耗能装置[J]. 电力自动化设备, 2021, 41 (7): 117- 123. |
XIE Yeyuan, YAO Hongyang, LI Haiying, et al. Modular series-connection DC energy braking device for VSC-HVDC system[J]. Electric Power Automation Equipment, 2021, 41 (7): 117- 123. | |
16 | 赵东君, 郭春义, 刘博, 等. 抑制风电经柔直并网系统直流过电压的晶闸管型直流耗能拓扑[J]. 电力自动化设备, 2023, 43 (1): 100- 106. |
ZHAO Dongjun, GUO Chunyi, LIU Bo, et al. Thyristor based DC energy dissipation topology for restraining DC overvoltage of wind power via flexible DC grid-connected system[J]. Electric Power Automation Equipment, 2023, 43 (1): 100- 106. | |
17 | 张浩博, 向往, 文劲宇. 应对受端交流故障的海上风电柔直并网系统主动能量控制方法[J]. 中国电机工程学报, 2023, 43 (12): 4600- 4614. |
ZHANG Haobo, XIANG Wang, WEN Jinyu. Active energy control of offshore wind power MMC-HVDC system to handle AC faults of receiving-end power grid[J]. Proceedings of the CSEE, 2023, 43 (12): 4600- 4614. | |
18 | 郭贤珊, 梅念, 李探, 等. 张北柔性直流电网盈余功率问题的机理分析及控制方法[J]. 电网技术, 2019, 43 (1): 157- 164. |
GUO Xianshan, MEI Nian, LI Tan, et al. Study on solution for power surplus in Zhangbei VSC-based DC grid mechanism analysis and control method[J]. Power System Technology, 2019, 43 (1): 157- 164. | |
19 | 杨艳晨, 郭剑波, 王姗姗, 等. 柔性直流电网直流过电压分析及控制策略研究[J]. 电网技术, 2019, 43 (5): 1586- 1592. |
YANG Yanchen, GUO Jianbo, WANG Shanshan, et al. Analysis and control strategy of DC overvoltage in MMC-HVDC grid[J]. Power System Technology, 2019, 43 (5): 1586- 1592. | |
20 | 梅念, 苑宾, 李探, 等. 接入孤岛新能源电场的双极柔直换流站控制策略[J]. 电网技术, 2018, 42 (11): 3575- 3582. |
MEI Nian, YUAN Bin, LI Tan, et al. Study on control strategy of bipolar VSC station connected to islanded renewable power plant[J]. Power System Technology, 2018, 42 (11): 3575- 3582. |
[1] | Ping ZHAO, Haosen JIA, Hengxiao GAO, Zhenxing LI. Coordinated Control Strategy of Modular Multi-level Converter-Based Multi-terminal Direct Current System for Onshore Wind Power Faults [J]. Electric Power, 2024, 57(8): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||