Electric Power ›› 2022, Vol. 55 ›› Issue (1): 2-12,83.DOI: 10.11930/j.issn.1004-9649.202105017
Previous Articles Next Articles
GU Chenjia, WANG Jianxue, LI Qingtao, ZHANG Yao
Received:
2021-05-07
Revised:
2021-09-08
Online:
2022-01-28
Published:
2022-01-20
Supported by:
GU Chenjia, WANG Jianxue, LI Qingtao, ZHANG Yao. Review on Large-Scale Centralized Energy Storage Planning under Centralized Grid Integration of Renewable Energy[J]. Electric Power, 2022, 55(1): 2-12,83.
[1] MURRAY B C, BISTLINE J, CREASON J, et al. The EMF 32 study on technology and climate policy strategies for greenhouse gas reductions in the US electric power sector: an overview[J]. Energy Economics, 2018, 73: 286–289. [2] SINSEL S R, RIEMKE R L, HOFFMANN V H. Challenges and solution technologies for the integration of variable renewable energy sources—a review[J]. Renewable Energy, 2020, 145: 2271–2285. [3] DEHGHANI-SANIJ A R, THARUMALINGAM E, DUSSEAULT M B, et al. Study of energy storage systems and environmental challenges of batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 192–208. [4] LIU J Y, ZHANG L. Strategy design of hybrid energy storage system for smoothing wind power fluctuations[J]. Energies, 2016, 9(12): 991. [5] 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用综述[J]. 电网与清洁能源, 2013, 29(8): 94–100, 108 XU Shouping, LI Xiangjun, HUI Dong. A survey of the development and demonstration application of large-scale energy storage[J]. Power System and Clean Energy, 2013, 29(8): 94–100, 108 [6] 李建林, 马会萌, 袁晓冬, 等. 规模化分布式储能的关键应用技术研究综述[J]. 电网技术, 2017, 41(10): 3365–3375 LI Jianlin, MA Huimeng, YUAN Xiaodong, et al. Overview on key applied technologies of large-scale distributed energy storage[J]. Power System Technology, 2017, 41(10): 3365–3375 [7] GU C J, WANG J X, YANG Q, et al. Assessing operational benefits of large-scale energy storage in power system: Comprehensive framework, quantitative analysis, and decoupling method[J]. International Journal of Energy Research, 2021, 45(7): 10191–10207. [8] 孙伟卿, 裴亮, 向威, 等. 电力系统中储能的系统价值评估方法[J]. 电力系统自动化, 2019, 43(8): 47–55 SUN Weiqing, PEI Liang, XIANG Wei, et al. Evaluation method of system value for energy storage in power system[J]. Automation of Electric Power Systems, 2019, 43(8): 47–55 [9] LI J H, FU Y N, XING Z T, et al. Coordination scheduling model of multi-type flexible load for increasing wind power utilization[J]. IEEE Access, 2019, 7: 105840–105850. [10] LOBATO E, SIGRIST L, ROUCO L. Use of energy storage systems for peak shaving in the Spanish Canary Islands[C]//2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada. IEEE, 2013: 1-5. [11] 徐国栋, 程浩忠, 马紫峰, 等. 用于平滑风电出力的储能系统运行与配置综述[J]. 电网技术, 2017, 41(11): 3470–3479 XU Guodong, CHENG Haozhong, MA Zifeng, et al. An overview of operation and configuration of energy storage systems for smoothing wind power outputs[J]. Power System Technology, 2017, 41(11): 3470–3479 [12] 陈刚, 袁越, 傅质馨. 储能电池平抑光伏发电波动的应用[J]. 电力系统及其自动化学报, 2014, 26(2): 27–31, 49 CHEN Gang, YUAN Yue, FU Zhixin. Application of storage battery to restrain the photovoltaic power fluctuation[J]. Proceedings of the CSU-EPSA, 2014, 26(2): 27–31, 49 [13] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. Energy management of flywheel-based energy storage device for wind power smoothing[J]. Applied Energy, 2013, 110: 207–219. [14] GO R S, MUNOZ F D, WATSON J P. Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards[J]. Applied Energy, 2016, 183: 902–913. [15] 车勇, 彭超锋, 袁铁江, 等. 计及储能的风电平衡区域电网优化划分方法[J]. 电网技术, 2017, 41(3): 775–781 CHE Yong, PENG Chaofeng, YUAN Tiejiang, et al. An optimized partitioning method balancing wind power in local power grid considering energy storage system[J]. Power System Technology, 2017, 41(3): 775–781 [16] HEYMANS C, WALKER S B, YOUNG S B, et al. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling[J]. Energy Policy, 2014, 71: 22–30. [17] LI Y H, WANG J X, GU C J, et al. Investment optimization of grid-scale energy storage for supporting different wind power utilization levels[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6): 1721–1734. [18] DURSUN B, ALBOYACI B. The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand[J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1979–1988. [19] HUANG Q S, XU Y J, COURCOUBETIS C. Financial incentives for joint storage planning and operation in energy and regulation markets[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3326–3339. [20] GUERRERO-MESTRE V, DVORKIN Y, FERNÁNDEZ-BLANCO R, et al. Incorporating energy storage into probabilistic security-constrained unit commitment[J]. IET Generation, Transmission & Distribution, 2018, 12(18): 4206–4215. [21] OBAID Z A, CIPCIGAN L M, MUHSSIN M T, et al. Control of a population of battery energy storage systems for frequency response[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105463. [22] 梁琛, 王鹏, 韩肖清, 等. 计及系统动态可靠性评估的光伏电站储能经济配置[J]. 电网技术, 2017, 41(8): 2639–2646 LIANG Chen, WANG Peng, HAN Xiaoqing, et al. Economic selection of energy storage system for PV station considering dynamic reliability evaluation[J]. Power System Technology, 2017, 41(8): 2639–2646 [23] ZHAO H Y, HONG M G, LIN W, et al. Voltage and frequency regulation of microgrid with battery energy storage systems[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 414–424. [24] 李翠萍, 张世宁, 李军徽, 等. 风储系统作为黑启动电源的容量配置策略[J]. 电力系统保护与控制, 2021, 49(3): 88–95 LI Cuiping, ZHANG Shining, LI Junhui, et al. Capacity configuration strategy of a wind power and energy storage system as a black-start source[J]. Power System Protection and Control, 2021, 49(3): 88–95 [25] PAUL A, AYYAPPAN A, HARIHARAN R. Adaptive system on battery storage for load pickup in power system restoration[J]. International Journal of Applied Engineering Research, 2015, 2015(10): 26226–26229. [26] 谢石骁, 杨莉, 李丽娜. 基于机会约束规划的混合储能优化配置方法[J]. 电网技术, 2012, 36(5): 79–84 XIE Shixiao, YANG Li, LI Lina. A chance constrained programming based optimal configuration method of hybrid energy storage system[J]. Power System Technology, 2012, 36(5): 79–84 [27] ZHANG B, DEHGHANIAN P, KEZUNOVIC M. Optimal allocation of PV generation and battery storage for enhanced resilience[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 535–545. [28] AWAD A S A, EL-FOULY T H M, SALAMA M M A. Optimal ESS allocation and load shedding for improving distribution system reliability[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2339–2349. [29] CHEN X Y, LV J, MCELROY M B, et al. Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6240–6253. [30] 李昀昊, 王建学, 曹晓宇, 等. 面向风电场–储能–输电网联合规划的机会约束IGDT模型[J]. 电网技术, 2019, 43(10): 3715–3724 LI Yunhao, WANG Jianxue, CAO Xiaoyu, et al. A chance-constrained IGDT model for joint planning of wind farm, energy storage and transmission[J]. Power System Technology, 2019, 43(10): 3715–3724 [31] 孙冰莹, 杨水丽, 刘宗歧, 等. 辅助单台火电机组AGC的电池储能系统双层优化配置方法[J]. 电力系统自动化, 2019, 43(8): 69–76, 157 SUN Bingying, YANG Shuili, LIU Zongqi, et al. Optimal bi-level configuration method for battery energy storage system assisting AGC of single thermal power unit[J]. Automation of Electric Power Systems, 2019, 43(8): 69–76, 157 [32] 王再闯, 袁铁江, 李永东, 等. 基于储能电站提高风电消纳能力的电源规划研究[J]. 可再生能源, 2014, 32(7): 954–960 WANG Zaichuang, YUAN Tiejiang, LI Yongdong, et al. Power planning based on energy storage station to improve accommodation of wind power[J]. Renewable Energy Resources, 2014, 32(7): 954–960 [33] 董凯, 江辉, 黄泽荣, 等. 运用成本效益分析的风/柴/储能系统规划方法[J]. 电力系统及其自动化学报, 2010, 22(3): 67–72 DONG Kai, JIANG Hui, HUANG Zerong, et al. Planning method of wind-diesel-storage system using cost-benefit analysis[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2010, 22(3): 67–72 [34] 王磊, 冯斌, 王昭, 等. 计及电池储能寿命损耗的风光储电站储能优化配置[J]. 电力科学与工程, 2019, 35(5): 1–6 WANG Lei, FENG Bin, WANG Zhao, et al. Optimal configuration of energy-storage capacity for wind/photovoltaic/energy-storage station considering energy-storage life loss[J]. Electric Power Science and Engineering, 2019, 35(5): 1–6 [35] 刘永前, 梁超, 阎洁, 等. 风-光电站中储能系统混合最优配置及其经济性研究[J]. 中国电力, 2020, 53(12): 143–150 LIU Yongqian, LIANG Chao, YAN Jie, et al. Optimal configuration and economic study of hybrid energy storage system in wind and solar power plants[J]. Electric Power, 2020, 53(12): 143–150 [36] 李凯, 康世崴, 闫方, 等. 基于风光火储的多能互补新能源基地规划分析[J]. 山东电力技术, 2020, 47(10): 17–21, 35 LI Kai, KANG Shiwei, YAN Fang, et al. Planning analysis of new energy base based on wind-photovoltaic-thermal-energy storage multi-energy complementary[J]. Shandong Electric Power, 2020, 47(10): 17–21, 35 [37] 刘树桦, 王建学, 李清涛, 等. 多能互补复合电站的优化配置及其在系统电源规划中的应用[J]. 电网技术, 2021, 45(8): 3006–3015 LIU Shuhua, WANG Jianxue, LI Qingtao, et al. Optimal configuration of multi-energy complementary composite power plant and its application in generation expansion planning[J]. Power System Technology, 2021, 45(8): 3006–3015 [38] 张熙, 张峰, 巩乃奇, 等. 基于荷电状态动态调整的储能电站容量规划[J]. 电力自动化设备, 2015, 35(11): 20–25 ZHANG Xi, ZHANG Feng, GONG Naiqi, et al. BESS capacity planning based on dynamic SOC adjustment[J]. Electric Power Automation Equipment, 2015, 35(11): 20–25 [39] BERRADA A, LOUDIYI K. Operation, sizing, and economic evaluation of storage for solar and wind power plants[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1117–1129. [40] MASAUD T M, OYEBANJO O, SEN P K. Sizing of large-scale battery storage for off-grid wind power plant considering a flexible wind supply–demand balance[J]. IET Renewable Power Generation, 2017, 11(13): 1625–1632. [41] BELDERBOS A, VIRAG A, D’HAESELEER W, et al. Considerations on the need for electricity storage requirements: Power versus energy[J]. Energy Conversion and Management, 2017, 143: 137–149. [42] JABR R A, DŽAFIĆ I, PAL B C. Robust optimization of storage investment on transmission networks[J]. IEEE Transactions on Power Systems, 2015, 30(1): 531–539. [43] HAN X N, LIAO S W, AI X M, et al. Determining the minimal power capacity of energy storage to accommodate renewable generation[J]. Energies, 2017, 10(4): 468. [44] HEMMATI R, SABOORI H, JIRDEHI M A. Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources[J]. Energy, 2017, 133: 380–387. [45] 桑丙玉, 姚良忠, 李明杨, 等. 基于二阶锥规划的含大规模风电接入的直流电网储能配置[J]. 电力系统保护与控制, 2020, 48(5): 86–94 SANG Bingyu, YAO Liangzhong, LI Mingyang, et al. Research on energy storage system planning of DC grid with large-scale wind power integration[J]. Power System Protection and Control, 2020, 48(5): 86–94 [46] XIONG P, SINGH C. Optimal planning of storage in power systems integrated with wind power generation[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 232–240. [47] FERNÁNDEZ-BLANCO R, DVORKIN Y, XU B L, et al. Optimal energy storage siting and sizing: a WECC case study[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 733–743. [48] WOGRIN S, GAYME D F. Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3304–3313. [49] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533–2543 ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533–2543 [50] PANDŽIĆ H, WANG Y S, QIU T, et al. Near-optimal method for siting and sizing of distributed storage in a transmission network[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2288–2300. [51] GHOFRANI M, ARABALI A, ETEZADI-AMOLI M, et al. A framework for optimal placement of energy storage units within a power system with high wind penetration[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 434–442. [52] GHOFRANI M, ARABALI A, ETEZADI-AMOLI M, et al. Energy storage application for performance enhancement of wind integration[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4803–4811. [53] WEN S L, LAN H, FU Q, et al. Economic allocation for energy storage system considering wind power distribution[J]. IEEE Transactions on Power Systems, 2015, 30(2): 644–652. [54] KORJANI S, MUREDDU M, FACCHINI A, et al. Aging cost optimization for planning and management of energy storage systems[J]. Energies, 2017, 10(11): 1916. [55] HOZOURI M A, ABBASPOUR A, FOTUHI-FIRUZABAD M, et al. On the use of pumped storage for wind energy maximization in transmission-constrained power systems[J]. IEEE Transactions on Power Systems, 2015, 30(2): 1017–1025. [56] QIU T, XU B L, WANG Y S, et al. Stochastic multistage coplanning of transmission expansion and energy storage[J]. IEEE Transactions on Power Systems, 2017, 32(1): 643–651. [57] DEHGHAN S, AMJADY N. Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 765–774. [58] 郭铭群, 赵鹏飞, 孙珂, 等. N-K重故障下输储协同规划模型及算法[J]. 电网技术, 2020, 44(11): 4218–4226 GUO Mingqun, ZHAO Pengfei, SUN Ke, et al. N-K contingencies considered joint planning of energy storage and transmission expansion problem: model and algorithm[J]. Power System Technology, 2020, 44(11): 4218–4226 [59] 郑静, 文福拴, 李力, 等. 计及风电场和储能系统联合运行的输电系统扩展规划[J]. 电力系统自动化, 2013, 37(1): 135–142 ZHENG Jing, WEN Fushuan, LI Li, et al. Transmission system expansion planning considering combined operation of wind farms and energy storage systems[J]. Automation of Electric Power Systems, 2013, 37(1): 135–142 [60] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9): 3238–3246 YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9): 3238–3246 [61] LI Z, WANG C F, LI B W, et al. Probability-interval-based optimal planning of integrated energy system with uncertain wind power[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 4–13. [62] ZHAO B N, CONEJO A J, SIOSHANSI R. Using electrical energy storage to mitigate natural gas-supply shortages[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7076–7086. [63] 薛晨, 任景, 马晓伟, 等. 面向高比例新能源消纳的西北调峰辅助服务市场机制及实践[J]. 中国电力, 2021, 54(11): 19–28 XUE Chen, REN Jing, MA Xiaowei, et al. Mechanism of peak regulation auxiliary electricity market in the presence of high-penetration renewable energy and its practice in northwest China[J]. Electric Power, 2021, 54(11): 19–28 [64] 胡静, 黄碧斌, 蒋莉萍, 等. 适应电力市场环境下的电化学储能应用及关键问题[J]. 中国电力, 2020, 53(1): 100–107 HU Jing, HUANG Bibin, JIANG Liping, et al. Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power, 2020, 53(1): 100–107 [65] 王良缘, 江岳文, 王杰. 考虑参与多市场交易的电网侧储能优化配置[J]. 电网与清洁能源, 2020, 36(11): 30–38 WANG Liangyuan, JIANG Yuewen, WANG Jie. Optimization of grid-side energy storage considering multi-market transaction[J]. Power System and Clean Energy, 2020, 36(11): 30–38 |
[1] | Zhengnan GAO, Nan JIANG, Qixin CHEN, Jiang XU, Haili WANG, Li XIN, Qinggui XU. Construction Experience of German Electricity Market Adapting to Energy Transition [J]. Electric Power, 2024, 57(6): 204-214. |
[2] | QI Buyang, ZHUO Zhenyu, DU Ershun, ZHANG Ning, KANG Chongqing. Planning and Assessment Method of Large-Scale Electrochemical Energy Storage in Power Grids Considering Battery Aging [J]. Electric Power, 2023, 56(8): 1-9,47. |
[3] | HU Yuou, GAO Zhiyuan, ZHANG Jing, ZHANG Tao. Implementation Scheme of Preferential Generation in Market-oriented Environment [J]. Electric Power, 2021, 54(9): 102-108. |
[4] | GAO Lei, SU Xinyi, LIU Shiyu. Study on Reasonable Curtailment Rate of Renewables under Certain Renewable Energy Consumption Quota Obligation [J]. Electric Power, 2020, 53(12): 136-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||