Electric Power ›› 2023, Vol. 56 ›› Issue (9): 1-13.DOI: 10.11930/j.issn.1004-9649.202308102
• Special Contribution • Previous Articles Next Articles
GUO Qinglai, LAN Jian, ZHOU Yanzhen, WANG Zhengcheng, ZENG Hongtai, SUN Hongbin
Received:
2023-08-24
Accepted:
2023-11-22
Online:
2023-09-23
Published:
2023-09-28
Supported by:
GUO Qinglai, LAN Jian, ZHOU Yanzhen, WANG Zhengcheng, ZENG Hongtai, SUN Hongbin. Architecture and Key Technologies of Hybrid-Intelligence-Based Decision-Making of Operation Modes for New Type Power Systems[J]. Electric Power, 2023, 56(9): 1-13.
[1] 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景和关键技术[J]. 中国电力企业管理, 2021(31): 14–17 [2] 国家电力调度控制中心. 国家电网运行方式编制流程[R].北京: 国家电力调度控制中心, 2021. [3] 屠竞哲, 何剑, 安学民, 等. 巴基斯坦“2023.1. 23”大停电事故分析及启示[J]. 中国电机工程学报, 2023, 43(14): 5319–5329 TU Jingzhe, HE Jian, AN Xuemin, et al. Analysis and lessons of Pakistan blackout event on January 23, 2023[J]. Proceedings of the CSEE, 2023, 43(14): 5319–5329 [4] 胡秦然, 丁昊晖, 陈心宜, 等. 美国加州2020年轮流停电事故分析及其对中国电网的启示[J]. 电力系统自动化, 2020, 44(24): 11–18 HU Qinran, DING Haohui, CHEN Xinyi, et al. Analysis on rotating power outage in California, USA in 2020 and its enlightenment to power grid of China[J]. Automation of Electric Power Systems, 2020, 44(24): 11–18 [5] 刘云. 巴西“9.13”远西北电网解列及停电事故分析及启示[J]. 中国电机工程学报, 2018, 38(11): 3204–3213 LIU Yun. Analysis on and inspiration of the “9.13” islanding and outage of Brazilian remote northwest power grid[J]. Proceedings of the CSEE, 2018, 38(11): 3204–3213 [6] HOU Q C, DU E S, ZHANG N, et al. Impact of high renewable penetration on the power system operation mode: a data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35(1): 731–741. [7] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461–475 XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461–475 [8] 郭剑波, 王铁柱, 罗魁, 等. 新型电力系统面临的挑战及应对思考[J]. 新型电力系统, 2023, 1(1): 32–43 GUO Jianbo, WANG Tiezhu, LUO Kui, et al. Development of new power systems: challenges and solutions[J]. New Type Power Systems, 2023, 1(1): 32–43 [9] 韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J/OL]. 中国电机工程学报: 1–24[2023-08-23]. https://doi.org/10.13334/j.0258-8013.pcsee.221560. HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J/OL]. Proceedings of the CSEE: 1–24[2023-08-23]. https://doi.org/10.13334/j.0258-8013.pcsee.221560. [10] 汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39(1): 2–13, 315 TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39(1): 2–13, 315 [11] 赵晋泉, 夏雪, 徐春雷, 等. 新一代人工智能技术在电力系统调度运行中的应用评述[J]. 电力系统自动化, 2020, 44(24): 1–10 ZHAO Jinquan, XIA Xue, XU Chunlei, et al. Review on application of new generation artificial intelligence technology in power system dispatching and operation[J]. Automation of Electric Power Systems, 2020, 44(24): 1–10 [12] 杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述[J]. 电力系统自动化, 2022, 46(22): 200–223 YANG Bo, CHEN Yijun, YAO Wei, et al. Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology[J]. Automation of Electric Power Systems, 2022, 46(22): 200–223 [13] 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506–5516 HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506–5516 [14] 赵峰, 孙宏斌, 黄天恩, 等. 电网关键断面及安全运行规则自动发现系统设计与工程实现[J]. 电力系统自动化, 2015, 39(1): 117–123 ZHAO Feng, SUN Hongbin, HUANG Tianen, et al. Design and engineering application of automatic discovery system for critical flowgates and security operation rules in power grids[J]. Automation of Electric Power Systems, 2015, 39(1): 117–123 [15] 黄天恩, 孙宏斌, 郭庆来, 等. 基于电网运行仿真大数据的知识管理和超前安全预警[J]. 电网技术, 2015, 39(11): 3080–3087 HUANG Tianen, SUN Hongbin, GUO Qinglai, et al. Knowledge management and security early warning based on big simulation data in power grid operation[J]. Power System Technology, 2015, 39(11): 3080–3087 [16] 黄天恩, 孙宏斌, 郭庆来, 等. 基于电网运行大数据的在线分布式安全特征选择[J]. 电力系统自动化, 2016, 40(4): 32–40 HUANG Tianen, SUN Hongbin, GUO Qinglai, et al. Online distributed security feature selection based on big data in power system operation[J]. Automation of Electric Power Systems, 2016, 40(4): 32–40 [17] 黄天恩, 郭庆来, 孙宏斌, 等. 模型-数据混合驱动的电网安全特征选择和知识发现关键技术与工程应用[J]. 电力系统自动化, 2019, 43(1): 95–101, 208 HUANG Tianen, GUO Qinglai, SUN Hongbin, et al. Hybrid model and data driven concepts for power system security feature selection and knowledge discovery: key technologies and engineering application[J]. Automation of Electric Power Systems, 2019, 43(1): 95–101, 208 [18] 孙宏斌, 黄天恩, 郭庆来, 等. 面向调度决策的智能机器调度员研制与应用[J]. 电网技术, 2020, 44(1): 1–8 SUN Hongbin, HUANG Tianen, GUO Qinglai, et al. Automatic operator for decision-making in dispatch: research and applications[J]. Power System Technology, 2020, 44(1): 1–8 [19] 林毅, 孙宏斌, 吴文传, 等. 日前计划安全校核中计划潮流自动生成技术[J]. 电力系统自动化, 2012, 36(20): 68–73 LIN Yi, SUN Hongbin, WU Wenchuan, et al. A schedule power flow auto generating technology in day-ahead security validation[J]. Automation of Electric Power Systems, 2012, 36(20): 68–73 [20] 赵书强, 索璕, 许朝阳, 等. 考虑断面约束的多能源电力系统时序性生产模拟[J]. 电力自动化设备, 2021, 41(7): 1–6 ZHAO Shuqiang, SUO Xun, XU Zhaoyang, et al. Time series production simulation of multi-energy power system considering section constraints[J]. Electric Power Automation Equipment, 2021, 41(7): 1–6 [21] 赵渊, 王洁, 耿莲, 等. 电网可靠性非序贯蒙特卡洛仿真的扩展交叉熵法[J]. 中国电机工程学报, 2017, 37(7): 1963–1974 ZHAO Yuan, WANG Jie, GENG Lian, et al. An extended cross entropy method for non-sequential Monte Carlo simulation of power system reliability assessment[J]. Proceedings of the CSEE, 2017, 37(7): 1963–1974 [22] 彭显刚, 林利祥, 刘艺, 等. 基于纵横交叉-拉丁超立方采样蒙特卡洛模拟法的分布式电源优化配置[J]. 中国电机工程学报, 2015, 35(16): 4077–4085 PENG Xiangang, LIN Lixiang, LIU Yi, et al. Optimal distributed generator allocation method based on correlation Latin hypercube sampling Monte Carlo simulation embedded crisscross optimization algorithm[J]. Proceedings of the CSEE, 2015, 35(16): 4077–4085 [23] FAN M, LI Z S, DING T, et al. Uncertainty evaluation algorithm in power system dynamic analysis with correlated renewable energy sources[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5602–5611. [24] 陈继林, 陈勇, 田芳, 等. 基于LSTM算法的电网仿真样本生成方法[J]. 中国电机工程学报, 2019, 39(14): 4129–4135 CHEN Jilin, CHEN Yong, TIAN Fang, et al. The method of sample generation for power grid simulation based on LSTM[J]. Proceedings of the CSEE, 2019, 39(14): 4129–4135 [25] 兰健, 郭庆来, 周艳真, 等. 基于生成对抗网络和模型迁移的电力系统典型运行方式样本生成[J]. 中国电机工程学报, 2022, 42(8): 2889–2900 LAN Jian, GUO Qinglai, ZHOU Yanzhen, et al. Generation of power system typical operation mode samples: a generation adversarial network and model-based transfer learning approach[J]. Proceedings of the CSEE, 2022, 42(8): 2889–2900 [26] 曾泓泰, 郭庆来, 周艳真, 等. 面向电网运行方式计算的不收敛潮流无功调整方法[J]. 电力系统保护与控制, 2022, 50(19): 1–12 ZENG Hongtai, GUO Qinglai, ZHOU Yanzhen, et al. Reactive power adjustment method of non-convergent power flow for power system operation mode calculation[J]. Power System Protection and Control, 2022, 50(19): 1–12 [27] IWAMOTO S, TAMURA Y. A load flow calculation method for ill-conditioned power systems[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(4): 1736–1743. [28] 覃智君, 侯云鹤, 吴复立. 大规模交直流系统潮流计算的实用化模型[J]. 中国电机工程学报, 2011, 31(10): 95–101 QIN Zhijun, HOU Yunhe, WU Fuli. Practical model for large-scale AC-DC system power flow calculation[J]. Proceedings of the CSEE, 2011, 31(10): 95–101 [29] 周佃民, 廖培金. 电力系统病态潮流的同伦方法求解[J]. 电力系统及其自动化学报, 1999, 11(增刊1): 67–71 ZHOU Dianmin, LIAO Peijin. Homotopy method for ill-conditioned power system load flow calculation[J]. Proceedings of the CSU-EPSA, 1999, 11(S1): 67–71 [30] 严正, 范翔, 赵文恺, 等. 自适应Levenberg-Marquardt方法提高潮流计算收敛性[J]. 中国电机工程学报, 2015, 35(8): 1909–1918 YAN Zheng, FAN Xiang, ZHAO Wenkai, et al. Improving the convergence of power flow calculation by a self-adaptive Levenberg-Marquardt method[J]. Proceedings of the CSEE, 2015, 35(8): 1909–1918 [31] 刘明松, 吴文传, 张伯明, 等. 电力系统潮流不可行的在线预防控制[J]. 电力系统自动化, 2008, 32(1): 11–15 LIU Mingsong, WU Wenchuan, ZHANG Boming, et al. An online preventive control method for power flow unsolvability[J]. Automation of Electric Power Systems, 2008, 32(1): 11–15 [32] 李敏, 陈金富, 陈海焱, 等. 一类潮流计算无解的实用性调整研究[J]. 电力系统自动化, 2006, 30(8): 11–15 LI Min, CHEN Jinfu, CHEN Haiyan, et al. Load flow regulation for unsolvable cases in a power system[J]. Automation of Electric Power Systems, 2006, 30(8): 11–15 [33] 陶向红, 卜广全, 王虹富, 等. 基于加权最小绝对值的大电力系统潮流可行解优化恢复方法[J]. 电力系统自动化, 2014, 38(23): 60–64, 76 TAO Xianghong, BU Guangquan, WANG Hongfu, et al. An optimization method based on weighted least absolute value to restore power flow solvability of bulk power system[J]. Automation of Electric Power Systems, 2014, 38(23): 60–64, 76 [34] 王毅, 侯俊贤, 马世英, 等. 用于调度计划安全稳定校核的潮流数据自动整合调整方法[J]. 电网技术, 2010, 34(4): 100–104 WANG Yi, HOU Junxian, MA Shiying, et al. A method of automatic integration and regulation of power flow data for security and stability check of generation scheduling analysis[J]. Power System Technology, 2010, 34(4): 100–104 [35] 李智欢, 韩云飞, 苏寅生, 等. 基于节点类型转换的潮流收敛性调整方法[J]. 电力系统自动化, 2015, 39(7): 188–193 LI Zhihuan, HAN Yunfei, SU Yinsheng, et al. A convergence adjustment method of power flow based on node type switching[J]. Automation of Electric Power Systems, 2015, 39(7): 188–193 [36] 张松涛, 张东霞, 黄彦浩, 等. 基于改进直流潮流算法的潮流计算收敛自动调整方法研究[J]. 电网技术, 2021, 45(1): 86–97 ZHANG Songtao, ZHANG Dongxia, HUANG Yanhao, et al. Research on automatic power flow convergence adjustment method based on modified DC power flow algorithm[J]. Power System Technology, 2021, 45(1): 86–97 [37] 王甜婧, 汤涌, 郭强, 等. 基于知识经验和深度强化学习的大电网潮流计算收敛自动调整方法[J]. 中国电机工程学报, 2020, 40(8): 2396–2406 WANG Tianjing, TANG Yong, GUO Qiang, et al. Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(8): 2396–2406 [38] 赵峰, 孙宏斌, 张伯明. 基于电气分区的输电断面及其自动发现[J]. 电力系统自动化, 2011, 35(5): 42–46, 81 ZHAO Feng, SUN Hongbin, ZHANG Boming. Electrical zone division based automatic discovery of flowgates[J]. Automation of Electric Power Systems, 2011, 35(5): 42–46, 81 [39] 赵峰. 电力系统安全运行知识自动发现和管理方法研究[D]. 北京: 清华大学, 2014. ZHAO Feng. Methods for automatic discovery and management of power system security operating knowledge[D]. Beijing: Tsinghua University, 2014. [40] 罗钢, 陈金富, 石东源, 等. 基于复杂网络理论的关键输电断面分析[J]. 中国电机工程学报, 2013, 33(25): 147–155 LUO Gang, CHEN Jinfu, SHI Dongyuan, et al. Key transmission sections analysis based on complex network theory[J]. Proceedings of the CSEE, 2013, 33(25): 147–155 [41] 孙景强, 房大中. 暂态稳定约束下极限传输能力的计算[J]. 电力系统自动化, 2005, 29(8): 21–25, 70 SUN Jingqiang, FANG Dazhong. Total transfer capability with transient stability constraints[J]. Automation of Electric Power Systems, 2005, 29(8): 21–25, 70 [42] DE TUGLIE E, DICORATO M, LA SCALA M, et al. A static optimization approach to assess dynamic available transfer capability[C]//Proceedings of the 21st International Conference on Power Industry Computer Applications. Santa Clara, CA, USA. IEEE, 2002: 269–277. [43] 刁勤华, 默哈莫德·夏班, 倪以信. 运用连续二次规划法计算区域间极限传输容量[J]. 电力系统自动化, 2000, 24(24): 5–8 DIAO Qinhua, MOHAMED Shaaban, NI Yixin. Inter-area total transfer capability calculation using sequential quadratic programming method in power marke[J]. Automation of Electric Power Systems, 2000, 24(24): 5–8 [44] EJEBE G C, TONG J, WAIGHT J G, et al. Available transfer capability calculations[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1521–1527. [45] FLUECK A J, CHIANG H D, SHAH K S. Investigating the installed real power transfer capability of a large scale power system under a proposed multiarea interchange schedule using CPFLOW[J]. IEEE Transactions on Power Systems, 1996, 11(2): 883–889. [46] LUO X, PATTON A D, SINGH C. Real power transfer capability calculations using multi-layer feed-forward neural networks[J]. IEEE Transactions on Power Systems, 2000, 15(2): 903–908. [47] 孙宏斌, 谢开, 蒋维勇, 等. 智能机器调度员的原理和原型[J]. 电网技术, 2006, 30(增刊2): 51–57 SUN Hongbin, XIE Kai, JIANG Weitong, et al. Automatic operator for power systems: principle and prototype[J]. Power System Technology, 2006, 30(S2): 51–57 [48] SUN Hongbin, ZHAO Feng, WANG H, et al. Automatic learning of fine operating rules for online power system security control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1708–1719. [49] TAKAHASHI H, KUMANO T. Available transfer capability screening considering transient stability by support vector machine[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA. IEEE, 2008: 1–6. [50] QIU G, LIU J Y, LIU Y B, et al. Ensemble learning for power systems TTC prediction with wind farms[J]. IEEE Access, 2019, 7: 16572–16583. [51] ZHOU Y Z, GUO Q L, SUN H B, et al. A novel data-driven approach for transient stability prediction of power systems considering the operational variability[J]. International Journal of Electrical Power & Energy Systems, 2019, 107: 379–394. [52] LIU D, SUN Y, QU Y, et al. Analysis and accurate prediction of user’s response behavior in incentive-based demand response[J]. IEEE Access, 2018, 7: 3170–3180. [53] HUANG Tianen, GUO Qinglai, SUN Hongbin, et al. A deep learning approach for power system knowledge discovery based on multitask learning[J]. IET Generation, Transmission & Distribution, 2019, 13(5): 733–740. [54] DUAN J J, LI H F, ZHANG X H, et al. A deep reinforcement learning based approach for optimal active power dispatch[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China. IEEE, 2020: 263–267. [55] 闫炯程, 李常刚, 刘玉田. 基于SDAE特征提取的含风电电网可用输电能力计算[J]. 电力系统自动化, 2019, 43(1): 32–39 YAN Jiongcheng, LI Changgang, LIU Yutian. Available transfer capability calculation in power system with wind power based on SDAE feature extraction[J]. Automation of Electric Power Systems, 2019, 43(1): 32–39 [56] FU Y, SHAHIDEHPOUR M, LI Z Y. Security-constrained unit commitment with AC constraints[J]. IEEE Transactions on Power Systems, 2005, 20(2): 1001–1013. [57] KOCUK B, DEY S S, SUN X A. Strong SOCP relaxations for the optimal power flow problem[J]. Operations Research, 2016, 64(6): 1177–1196. [58] BAI X Q, WEI H, FUJISAWA K, et al. Semidefinite programming for optimal power flow problems[J]. International Journal of Electrical Power & Energy Systems, 2008, 30(6/7): 383–392. [59] PAN X, ZHAO T Y, CHEN M H, et al. Deep OPF: a deep neural network approach for security-constrained DC optimal power flow[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1725–1735. [60] LEI X Y, YANG Z F, YU J, et al. Data-driven optimal power flow: a physics-informed machine learning approach[J]. IEEE Transactions on Power Systems, 2021, 36(1): 346–354. [61] ZHOU Y H, ZHANG B, XU C L, et al. A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1128–1139. [62] 严梓铭, 徐岩. 结合深度强化学习与领域知识的电力系统拓扑结构优化[J]. 电力系统自动化, 2022, 46(1): 60–68 YAN Ziming, XU Yan. Topology optimization of power systems combining deep reinforcement learning and domain knowledge[J]. Automation of Electric Power Systems, 2022, 46(1): 60–68 [63] ZHANG B, LU X, DIAO R S, et al. Real-time autonomous line flow control using proximal policy optimization[C]//2020 IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC, Canada. IEEE, 2020: 1–5. [64] DUAN J J, SHI D, DIAO R S, et al. Deep-reinforcement-learning-based autonomous voltage control for power grid operations[J]. IEEE Transactions on Power Systems, 2020, 35(1): 814–817. [65] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131–137 LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131–137 [66] 尚宇炜, 马钊, 彭晨阳, 等. 内嵌专业知识和经验的机器学习方法探索(二): 引导学习的应用与实践[J]. 中国电机工程学报, 2017, 37(20): 5852–5861 SHANG Yuwei, MA Zhao, PENG Chenyang, et al. Study of a novel machine learning method embedding expertise (part II): applications and practices of guiding learning[J]. Proceedings of the CSEE, 2017, 37(20): 5852–5861 [67] 王国政, 郭剑波, 马士聪, 等. 电力系统增强智能分析初探[J]. 中国电机工程学报, 2020, 40(16): 5079–5088 WANG Guozheng, GUO Jianbo, MA Shicong, et al. Preliminary study of power system enhanced intelligence analysis[J]. Proceedings of the CSEE, 2020, 40(16): 5079–5088 [68] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Communications of the ACM, 2020, 63(11): 139–144. [69] HUANG Tianen, GUO Qinglai, SUN Hongbin, et al. A deep spatial-temporal data-driven approach considering microclimates for power system security assessment[J]. Applied Energy, 2019, 237: 36–48. [70] SPIRTES P, GLYMOUR C. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computer Review, 1991, 9(1): 62–72. [71] 王铮澄, 周艳真, 郭庆来, 等. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341–2350 WANG Zhengcheng, ZHOU Yanzhen, GUO Qinglai, et al. Transient stability assessment of power system considering topological change: a message passing neural network-based approach[J]. Proceedings of the CSEE, 2021, 41(7): 2341–2350 [72] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61–80. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||