[1] 全球能源互联网发展合作组织. 中国"十四五"电力发展规划研究. 北京:全球能源互联网发展合作组织, 2020. [2] 全球能源互联网发展合作组织. 大规模储能技术发展路线图[R]. 北京:全球能源互联网发展合作组织, 2020. [3] 中国电力科学研究院组. 大规模储能技术及其在电力系统中的应用[M]. 北京:中国电力出版社, 2016. [4] 国家电网公司"电网新技术前景研究"项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1):3-8 [5] 李琼慧, 王彩霞, 张静, 等. 适用于电网的先进大容量储能技术 发展路线图研究[J]. 储能科学与技术, 2017, 6(1):141-146 LI Qionghui, WANG Caixia, ZHANG Jing, et al. A roadmap for large scale energy storage for grid-level applications[J]. Energy Storage Science and Technology, 2017, 6(1):141-146 [6] 张明霞, 闫涛, 来小康, 等. 电网新功能形态下储能技术的发展愿景和技术路径[J]. 电网技术, 2018, 42(5):1370-1377 ZHANG Mingxia, YAN Tao, LAI Xiaokang, et al. Technology vision and route of energy storage under new power grid function configuration[J]. Power System Technology, 2018, 42(5):1370-1377 [7] WEISS T, PAPAPETROU M, WÄNN A, et al. Facilitating energy storage to allow high penetration of intermittent renewable energy[C]//7th International Renewable Energy Storage Conference and Exhibition (IRES 2012). 2012. [8] SHIGENOBU R, NOORZAD A S, MUARAPAZ C, et al. Optimal operation and management for smart grid subsumed high penetration of renewable energy, electric vehicle, and battery energy storage system[J]. International Journal of Emerging Electric Power Systems, 2016, 17(2):173-189. [9] ZHANG Y, GUO B, ZHANG T. MPC based approach for reliable power system energy management with high penetration level of renewable energy resources[J]. Advanced Materials Research, 2014, 986:371-376. [10] MOGHADDAM I N, CHOWDHURY B H, MOHAJERYAMI S. Predictive operation and optimal sizing of battery energy storage with high wind energy penetration[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8):6686-6695. [11] SAMADI P, WONG V W S, SCHOBER R. Load scheduling and power trading in systems with high penetration of renewable energy resources[J]. IEEE Transactions on Smart Grid, 2016, 7(4):1802-1812. [12] MEJÍA-GIRALDO D, MCCALLEY J D. Maximizing future flexibility in electric generation portfolios[J]. IEEE Transactions on Power Systems, 2014, 29(1):279-288. [13] MA J, SILVA V, BELHOMME R, et al. Evaluating and planning flexibility in sustainable power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1):200-209. [14] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13):147-158 LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13):147-158 [15] 李海波, 鲁宗相, 乔颖. 源荷储一体化的广义灵活电源双层统筹规划[J]. 电力系统自动化, 2017, 41(21):46-54, 104 LI Haibo, LU Zongxiang, QIAO Ying. Bi-level optimal planning of generation-load-storage integrated generalized flexibility resource[J]. Automation of Electric Power Systems, 2017, 41(21):46-54, 104 [16] 张宁, 代红才, 胡兆光, 等. 考虑系统灵活性约束与需求响应的源网荷协调规划模型[J]. 中国电力, 2019, 52(2):61-69 ZHANG Ning, DAI Hongcai, HU Zhaoguang, et al. A source-grid-load coordinated planning model considering system flexibility constraints and demand response[J]. Electric Power, 2019, 52(2):61-69 [17] 程耀华, 张宁, 王佳明, 等. 面向高比例可再生能源并网的输电网规划方案综合评价[J]. 电力系统自动化, 2019, 43(3):33-42, 57 CHENG Yaohua, ZHANG Ning, WANG Jiaming, et al. Comprehensive evaluation of transmission network planning for integration of high-penetration renewable energy[J]. Automation of Electric Power Systems, 2019, 43(3):33-42, 57 [18] 徐唐海, 鲁宗相, 乔颖, 等. 源荷储多类型灵活性资源协调的高比例可再生能源电源规划[J]. 全球能源互联网, 2019, 2(1):27-34 XU Tanghai, LU Zongxiang, QIAO Ying, et al. High penetration of renewable energy power planning considering coordination of source-load-storage multi-type flexible resources[J]. Journal of Global Energy Interconnection, 2019, 2(1):27-34 [19] 殷凤媛, 迟清, 肖博文, 等. 考虑延迟期权的增量配电网源网协调规划方法[J]. 智慧电力, 2021, 49(2):7-14 YIN Fengyuan, CHI Qing, XIAO Bowen, et al. Coordinated planning method of source and network in incremental distribution network considering delay options[J]. Smart Power, 2021, 49(2):7-14 [20] 计及高比例可再生能源运行特性的中长期电力发展分析. 源荷储一体化的广义灵活电源双层统筹规划[J]. 电力系统自动化, 2017, 41(21):9-16 WANG Yaohua, JIAO Bingqi, ZHANG Fuqiang, et al. Medium and long-term electric power development considering operating characteristics of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(21):9-16 [21] 清华大学. 电力规划决策与评估系统技术手册[R]. 北京:清华大学, 2019.
|