Electric Power ›› 2020, Vol. 53 ›› Issue (10): 26-33.DOI: 10.11930/j.issn.1004-9649.202006201
Previous Articles Next Articles
DENG Kai1, LI Yongjian1, CHENG Hao1, GONG Xuehai2, YANG Fuyao2
Received:2020-06-19
Revised:2020-08-10
Online:2020-10-05
Supported by:DENG Kai, LI Yongjian, CHENG Hao, GONG Xuehai, YANG Fuyao. Modeling and Verification of A Novel Vector Hysteron Model[J]. Electric Power, 2020, 53(10): 26-33.
| [1] PLUTA A, MOSES J. Prediction of angular variation of specific total loss of Goss oriented electrical steel[J]. Physica B: Condensed Matter, 2018, 544: 28-33. [2] ZIRKA S E, MOROZ Y I, STEENTJES S, et al. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures[J]. Journal of Magnetism and Magnetic Materials, 2015, 394: 229-236. [3] WANG Y, HUANG L, CAO Y, et al. The equivalent model of controller in synchronous frame to stationary frame[J]. Global Energy Interconnection, 2018, 1(2): 122-129. [4] STONER E, WOHLFARTH E. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 240(826): 599-642. [5] PINZAGLIA E, FABA A. Modelling of vector hysteresis at macromagnetic scale: Open questions and challenges[J]. Physica B: Condensed Matter, 2016, 486: 130-137. [6] BERNARD L, DANIEL L. Effect of stress on magnetic hysteresis losses in a switched reluctance motor: Application to stator and rotor shrink fitting[J]. IEEE Transactions on Magnetics, 2015, 51(9): 1-13. [7] BERNARD L, MAILHE B J, SADOWSKI N, et al. Multiscale approaches for magneto-elasticity in device simulation[J]. Journal of Magnetism and Magnetic Materials, 2019, 487(165241). [8] ITO S, MIFUNE T, MATSUO T, et al. Simulation of the stress dependence of hysteresis loss using an energy-based domain model[J]. AIP Advances, 2018, 8(4): 047501. [9] TEJIMA S, ITO S, MIFUNE T, et al. Partially-implicit method for fast magnetization analysis using assembled domain structure model[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. [10] MAYERGOYZ I D. Generalized scalar preisach models of hysteresis[M]//Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991: 64-140 [11] CARDELLI E, FABA A, LAUDANI A, et al. A moving approach for the Vector Hysteron Model[J]. Physica B Condensed Matter, 2016, 486: 92-96. [12] CARDELLI E, FABA A, POMPEI M, et al. Pattern search approach to ferromagnetic material modelling[J]. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 2019, 32(4), 2271 [13] CARDELLI E. A general hysteresis operator for the modeling of vector fields[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2056-2067. [14] CARDELLI E, TORRE E D, FABA A. A general vector hysteresis operator: extension to the 3-D case[J]. IEEE Transactions on Magnetics, 2010, 46(12): 3990-4000. [15] POSTON T, STEWART I. Catastrophe theory and its applications[M]. New York: Dover Publications, 2014: 80-82. [16] BERTOTTL G. Hysteresis In magnetism: for physicists, materials scientists, and engineers[M]. San Diego (Calif.): Academic Press, 1998: 53-54. [17] 刘晨蕾, 潘卓洪, 文习山, 等. 一种基于碳化硅IGBT的可控型直流偏磁抑制方法[J]. 电力科学与技术学报, 2019, 34(1): 67-73 LIU Chenlei, PAN Zhuohong, WEN Xishan, et al. a controllable DC bias suppression device based on the SiC IGBT[J]. Journal of Electric Power Science and Technology, 2019, 34(1): 67-73 [18] 李宗奎. 浅析突变理论及其工程应用[J]. 四川建材, 2018, 44(12): 87-89 LI Zongkui. A Brief Analysis of Mutation Theory and its Engineering Application[J]. Sichuan Building Materials, 2018, 44(12): 87-89 [19] CARDELLI E, FABA A, LAUDANI A, et al. A challenging hysteresis operator for the simulation of Goss-textured magnetic materials[J]. Journal of Magnetism and Magnetic Materials, 2017, 432: 14-23. [20] BURRASCANO P, CARDELLI E, DELLA T D,et al. Numerical identification procedure for a phenomenological vector hysteresis model[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1166-1169. [21] THIAVILLE A. Extensions of the geometric solution of the two dimensional coherent magnetization rotation model[J]. Journal of Magnetism and Magnetic Materials, 1998, 182(1-2): 5-18. [22] FULGINEI F R SALVINI A, PULCINI G. Metric-topological-evolutionary optimization[J]. Inverse Problems in Science and Engineering, 2012, 20(1): 41-58. [23] LAUDANI A, FULGINEI F R, SALVINI A. Bouc-Wen hysteresis model identification by the metric-topological evolutionary optimization[J]. IEEE Transactions on Magnetics, 2014, 50(2): 621-624. |
| [1] | YUAN Tiejiang, LI Rongsheng, KANG Jiandong, YAN Huaguang. Residual Life Prediction of Proton Exchange Membrane Fuel Cell Based on Improved ESN [J]. Electric Power, 2025, 58(5): 102-109. |
| [2] | JI Rongrong, WANG Mengzhi, ZHOU Guowei, LIU Qingyao, LI Hai, HUANG Ruofan. Cloud-based Optimized Intelligent Substation Secondary System Rapid Test Model and System Design [J]. Electric Power, 2025, 58(5): 152-157. |
| [3] | Lei XI, Yixiao WANG, Miao HE, Chen CHENG, Xilong TIAN. FDIA Detection in Power Grid Based on Opposition-Based Whale Optimization Algorithm and Multi-layer Extreme Learning Machine [J]. Electric Power, 2024, 57(9): 20-31. |
| [4] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. |
| [5] | Hongzhong MA, Wenjing XUAN, Muyu ZHU, Yuelin CHEN. SOC Estimation of Large Capacity Lithium Batteries Based on LWOA-LSTM [J]. Electric Power, 2024, 57(6): 37-44. |
| [6] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Wenye WANG, Shuai ZHANG, Fengzhan ZHAO. Optimal Allocation of Hybrid Energy Storage in Low-Voltage Distribution Networks with Incentive-based Demand Response [J]. Electric Power, 2024, 57(6): 90-101. |
| [7] | Yang WANG, Fei LU, Ji LI, Zhukui TAN, Zongyu SUN, Wei XU, Zihong SONG, Zhenpeng LIU. Multi-energy System Planning and Configuration Study for Low-Carbon Parks Based on Comprehensive Optimization Objectives [J]. Electric Power, 2024, 57(4): 14-24. |
| [8] | DONG Fugui, XIA Meijuan, LI Wanying. Prediction of Provincial Energy Consumption Intensity and Estimation of Carbon Emission Reduction Potential Based on PSO-GWO [J]. Electric Power, 2023, 56(9): 226-234. |
| [9] | Zihan CHEN, Wei TENG, Xuefeng XU, Xian DING, Yibing LIU. Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting [J]. Electric Power, 2023, 56(10): 96-105. |
| [10] | CHEN Zhengxiong, PAZILAI Mahemuti, SHEN Wei. Aging Prediction of IGBT Based on Improved Support Vector Regression [J]. Electric Power, 2022, 55(7): 1-10. |
| [11] | ZHANG Na, REN Qiang, LIU Guangchen, GUO Liping, LI Jingyu. PV Power Short-Term Forecasting Method Based on VMD-GWO-ELMAN [J]. Electric Power, 2022, 55(5): 57-65. |
| [12] | LIANG Haiping, SHI Haoyan, WANG Yan, LIU Yingpei, WANG Xinming. Resilience-Improving Based Optimization of Post-Disaster Emergency Maintenance Strategy for Transmission Networks [J]. Electric Power, 2022, 55(3): 142-151. |
| [13] | YI Jingui, ZHU Ziwei, XIE Qing. Research on Optimal Configuration of Offshore Wind Power Energy Storage Based on Improved Scene Clustering Algorithm [J]. Electric Power, 2022, 55(12): 2-10. |
| [14] | ZHOU Xin, LIN Jingxing, XIE Zhiwei, ZHANG Zheng, LIANG Ruduo, OU Zuhong. A Distribution Network Expansion Project Classification Model Based on Data Augmentation and Dimensionality Reduction Method [J]. Electric Power, 2022, 55(12): 91-97. |
| [15] | PENG Chunhua, LIU Yi, SUN Huijuan. Optimal Operation of Multi-Source Power Generation System with Electric Heater and Concentrating Solar Power Plant Considering Conditional Risk Cost [J]. Electric Power, 2022, 55(1): 64-74. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
