中国电力 ›› 2025, Vol. 58 ›› Issue (10): 180-187.DOI: 10.11930/j.issn.1004-9649.202506027
卓定明1(
), 杜瑞1, 杨远通1, 葛海麟1, 杨嘉伟2, 徐箴箴2, 易杨3
收稿日期:2025-06-10
发布日期:2025-10-23
出版日期:2025-10-28
作者简介:基金资助:
ZHUO Dingming1(
), DU Rui1, YANG Yuantong1, GE Hailin1, YANG Jiawei2, XU Zhenzhen2, YI Yang3
Received:2025-06-10
Online:2025-10-23
Published:2025-10-28
Supported by:摘要:
抽水蓄能调峰削谷效果明显,与核电联营能够稳定核电利用小时数,但也将压缩新能源发电的消纳空间。针对这一矛盾,立足于系统效益开展了“核蓄”联营的规划研究。从出力等效与经济效益2个维度界定“核蓄”联营的合理配比。在此基础上,基于8 760 h生产模拟获取不同“核蓄”联营规模的系统发电成本、新能源消纳率、煤电发电量等关键数据画像。基于熵权法赋予关键指标客观权重,将多元数据凝聚为综合评价,准确推荐最优联营规模。结果表明,所建立的分析方法能够满足多指标维度下的“核蓄”联营规划,同时以合理规模开展“核蓄”联营能够获得关键指标约束下的最优综合效益。
卓定明, 杜瑞, 杨远通, 葛海麟, 杨嘉伟, 徐箴箴, 易杨. 基于生产模拟与熵权法的“核蓄”联营规划[J]. 中国电力, 2025, 58(10): 180-187.
ZHUO Dingming, DU Rui, YANG Yuantong, GE Hailin, YANG Jiawei, XU Zhenzhen, YI Yang. Nuclear-Pumped Storage Combined Operation Planning Based on Production Simulation and Entropy Weight Method[J]. Electric Power, 2025, 58(10): 180-187.
| 方案 | 核电 总规模/ 万kW | 抽水蓄能 总规模/ 万kW | 联营核 电规模/ 万kW | 联营抽水 蓄能规模/ 万kW | 联营核 蓄配比 | 全省核电 等效利用 小时数/h | ||||||
| 1 | 1 706 | 885 | 0 | 0 | — | 7 000 | ||||||
| 2 | 1 706 | 885 | 120 | 43 | 2.8∶1 | 7 049 | ||||||
| 3 | 1 706 | 885 | 240 | 86 | 2.8∶1 | 7 098 | ||||||
| 4 | 1 706 | 885 | 360 | 129 | 2.8∶1 | 7 148 | ||||||
| 5 | 1 706 | 885 | 480 | 172 | 2.8∶1 | 7 197 | ||||||
| 6 | 1 706 | 885 | 600 | 215 | 2.8∶1 | 7 246 | ||||||
| 7 | 1 706 | 885 | 720 | 258 | 2.8∶1 | 7 295 | ||||||
| 8 | 1 706 | 885 | 840 | 301 | 2.8∶1 | 7 345 |
表 1 不同“核蓄”联营规模生产模拟方案
Table 1 Production simulation schemes under different "nuclear -pumped storage" combined operation scales
| 方案 | 核电 总规模/ 万kW | 抽水蓄能 总规模/ 万kW | 联营核 电规模/ 万kW | 联营抽水 蓄能规模/ 万kW | 联营核 蓄配比 | 全省核电 等效利用 小时数/h | ||||||
| 1 | 1 706 | 885 | 0 | 0 | — | 7 000 | ||||||
| 2 | 1 706 | 885 | 120 | 43 | 2.8∶1 | 7 049 | ||||||
| 3 | 1 706 | 885 | 240 | 86 | 2.8∶1 | 7 098 | ||||||
| 4 | 1 706 | 885 | 360 | 129 | 2.8∶1 | 7 148 | ||||||
| 5 | 1 706 | 885 | 480 | 172 | 2.8∶1 | 7 197 | ||||||
| 6 | 1 706 | 885 | 600 | 215 | 2.8∶1 | 7 246 | ||||||
| 7 | 1 706 | 885 | 720 | 258 | 2.8∶1 | 7 295 | ||||||
| 8 | 1 706 | 885 | 840 | 301 | 2.8∶1 | 7 345 |
| 电源 类型 | 利用小时数/h | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | 3 399 | 3 378 | 3 354 | 3 331 | 3 310 | 3 287 | 3 267 | 3 255 | ||||||||
| 气电 | 1 314 | 1 323 | 1 352 | 1 378 | 1 390 | 1 419 | 1 439 | 1 459 | ||||||||
| 水电 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | ||||||||
| 抽蓄 | 1 553 | 1 555 | 1 561 | 1 566 | 1 572 | 1 578 | 1 584 | 1 595 | ||||||||
| 核电 | 6 999 | 7 054 | 7 110 | 7 164 | 7 220 | 7 275 | 7 331 | 7 388 | ||||||||
表 2 2030年常规电源利用小时数
Table 2 Conventional power utilization hours in 2030
| 电源 类型 | 利用小时数/h | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | 3 399 | 3 378 | 3 354 | 3 331 | 3 310 | 3 287 | 3 267 | 3 255 | ||||||||
| 气电 | 1 314 | 1 323 | 1 352 | 1 378 | 1 390 | 1 419 | 1 439 | 1 459 | ||||||||
| 水电 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | 2 435 | ||||||||
| 抽蓄 | 1 553 | 1 555 | 1 561 | 1 566 | 1 572 | 1 578 | 1 584 | 1 595 | ||||||||
| 核电 | 6 999 | 7 054 | 7 110 | 7 164 | 7 220 | 7 275 | 7 331 | 7 388 | ||||||||
| 电源 类型 | 发电量/(亿kW·h) | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | ||||||||||||||||
| 气电 | 77.9 | 78.5 | 80.2 | 81.7 | 82.4 | 84.1 | 85.3 | 86.5 | ||||||||
| 水电 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | ||||||||
| 抽蓄 | 137.4 | 137.7 | 138.2 | 138.6 | 139.1 | 139.6 | 140.2 | 141.2 | ||||||||
| 核电 | 1195.0 | |||||||||||||||
表 3 2030年常规电源发电量
Table 3 Conventional power generation in 2030
| 电源 类型 | 发电量/(亿kW·h) | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | ||||||||||||||||
| 气电 | 77.9 | 78.5 | 80.2 | 81.7 | 82.4 | 84.1 | 85.3 | 86.5 | ||||||||
| 水电 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | 295.0 | ||||||||
| 抽蓄 | 137.4 | 137.7 | 138.2 | 138.6 | 139.1 | 139.6 | 140.2 | 141.2 | ||||||||
| 核电 | 1195.0 | |||||||||||||||
| 项目 | 成本/亿元 | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | 634.2 | 632.4 | 629.5 | 626.7 | 624.8 | 622.0 | 620.1 | 618.8 | ||||||||
| 气电 | 56.1 | 56.5 | 57.7 | 58.8 | 59.3 | 60.6 | 61.4 | 62.3 | ||||||||
| 抽蓄 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | ||||||||
| 核电 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | ||||||||
| 风电 | 344.0 | 343.7 | 343.3 | 343.0 | 342.6 | 342.2 | 341.6 | 340.0 | ||||||||
| 光伏 | 31.1 | 31.1 | 31.1 | 31.0 | 31.0 | 31.0 | 31.0 | 30.9 | ||||||||
| 新能源弃电 | 0.5 | 0.9 | 1.3 | 1.6 | 2.0 | 2.4 | 3.0 | 4.7 | ||||||||
| 累计 | ||||||||||||||||
表 4 不同“核蓄”联营规模方案系统发电成本
Table 4 Power generation cost under different "nuclear -pumped storage" combined operation scales
| 项目 | 成本/亿元 | |||||||||||||||
| 方案1 | 方案2 | 方案3 | 方案4 | 方案5 | 方案6 | 方案7 | 方案8 | |||||||||
| 煤电 | 634.2 | 632.4 | 629.5 | 626.7 | 624.8 | 622.0 | 620.1 | 618.8 | ||||||||
| 气电 | 56.1 | 56.5 | 57.7 | 58.8 | 59.3 | 60.6 | 61.4 | 62.3 | ||||||||
| 抽蓄 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | 55.9 | ||||||||
| 核电 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | 418.4 | ||||||||
| 风电 | 344.0 | 343.7 | 343.3 | 343.0 | 342.6 | 342.2 | 341.6 | 340.0 | ||||||||
| 光伏 | 31.1 | 31.1 | 31.1 | 31.0 | 31.0 | 31.0 | 31.0 | 30.9 | ||||||||
| 新能源弃电 | 0.5 | 0.9 | 1.3 | 1.6 | 2.0 | 2.4 | 3.0 | 4.7 | ||||||||
| 累计 | ||||||||||||||||
| 指标 | 理想 接近度 | 信息熵 | 信息 冗余度 | 权重 | ||||
| 1(煤电发电量) | 0.042 0 | 0.505 5 | 0.494 5 | 0.336 0 | ||||
| 2(新能源消纳率) | 0.042 0 | 0.511 1 | 0.488 9 | 0.332 2 | ||||
| 3(系统发电成本) | 0.042 0 | 0.511 7 | 0.488 3 | 0.331 8 |
表 5 熵权法模型关键值
Table 5 Key values of entropy weight method
| 指标 | 理想 接近度 | 信息熵 | 信息 冗余度 | 权重 | ||||
| 1(煤电发电量) | 0.042 0 | 0.505 5 | 0.494 5 | 0.336 0 | ||||
| 2(新能源消纳率) | 0.042 0 | 0.511 1 | 0.488 9 | 0.332 2 | ||||
| 3(系统发电成本) | 0.042 0 | 0.511 7 | 0.488 3 | 0.331 8 |
| 1 | 郭娟娟, 沈迪, 童朴, 等. 中国三代核电经济评价方法与参数优化[J]. 中国电力, 2024, 57 (3): 206- 212, 223. |
| GUO Juanjuan, SHEN Di, TONG Pu, et al. Economic evaluation method and parameter optimization for third generation nuclear power in China[J]. Electric Power, 2024, 57 (3): 206- 212, 223. | |
| 2 | 晁文浩, 袁至, 李骥. 计及电转气-风-火-核-碳捕集的多源联合系统优化调度[J]. 中国电力, 2024, 57 (1): 183- 194. |
| CHAO Wenhao, YUAN Zhi, LI Ji. Optimal dispatch of power system with P2G-wind-thermal-nuclear-carbon capture units[J]. Electric Power, 2024, 57 (1): 183- 194. | |
| 3 | 俞颖. 全球电力发展现状[J]. 电力科技与环保, 2025, 41 (1): 173. |
| 4 | 徐浩然, 张瑾昀, 马歆, 等. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46 (3): 454- 466. |
| XU Haoran, ZHANG Jinyun, MA Xin, et al. Applications and prospects of graph retrieval-augmented generation technology based on large language models in the nuclear power field[J]. Power Generation Technology, 2025, 46 (3): 454- 466. | |
| 5 | 刘之琳, 许传龙, 郑海峰, 等. 德国关停核电前后保供应促消纳经验分析[J]. 中国电力, 2023, 56 (10): 145- 152. |
| LIU Zhilin, XU Chuanlong, ZHENG Haifeng, et al. Empirical analysis of ensuring electricity supply and promoting renewable power consumption before and after the shutdown of nuclear power plants: the Germany case[J]. Electric Power, 2023, 56 (10): 145- 152. | |
| 6 | 李洋, 尹逊虎, 张思, 等. 考虑多元发电资源灵活性的电力系统紧急调峰调度方法[J]. 浙江电力, 2023, 42 (8): 37- 45. |
| LI Yang, YIN Xunhu, ZHANG Si, et al. Emergency peak shaving dispatching method for power system considering flexibility of multiple power generation resources[J]. Zhejiang Electric Power, 2023, 42 (8): 37- 45. | |
| 7 | 王妍心, 王蔚, 李华, 等. 新型电力系统抽水蓄能电站需求规模研究: 以陕西电网为例[J]. 北斗与空间信息应用技术, 2025, (1): 37- 40. |
| WANG Yanxin, WANG Wei, LI Hua, et al. Research on the demand scale of the pumped storage power station in the new power system: take Shanxi power grid as an example[J]. Beidou and Spatial Information Application Technology, 2025, (1): 37- 40. | |
| 8 | 王靖, 孙帆, 李晖, 等. 基于变速抽蓄的新能源送端电网能量平衡优化控制方法研究[J]. 可再生能源, 2024, 42 (7): 964- 971. |
| WANG Jing, SUN Fan, LI Hui, et al. Research on energy balance optimization control method of new energy sending end power grid based on variable speed pumping and storage[J]. Renewable Energy Resources, 2024, 42 (7): 964- 971. | |
| 9 | 朱军辉. 海水抽水蓄能与海上光伏一体化发电技术及经济性分析[J]. 南方能源建设, 2023, 10 (2): 11- 17. |
| ZHU Junhui. Analysis of power generation technology and economy on the integration of seawater pump & storage and offshore PV[J]. Southern Energy Construction, 2023, 10 (2): 11- 17. | |
| 10 | 何英静, 王湘, 但扬清, 等. 考虑源荷不确定性的风光水蓄互补系统优化调度策略[J]. 浙江电力, 2025, 44 (4): 103- 111. |
| HE Yingjing, WANG Xiang, DAN Yangqing, et al. An optimal scheduling strategy for a wind-solar-hydropower-pumped storage complementary system considering source-load uncertainty[J]. Zhejiang Electric Power, 2025, 44 (4): 103- 111. | |
| 11 | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45 (9): 48- 58. |
| XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45 (9): 48- 58. | |
| 12 | 刘硕, 马兆兴, 刘金鑫, 等. 面向新能源消纳的新型电力系统优化运行策略[J]. 湖南电力, 2024, 44 (1): 59- 66. |
| LIU Shuo, MA Zhaoxing, LIU Jinxin, et al. Optimal operation strategies of new power system aimed at renewable energy system consumption[J]. Hunan Electric Power, 2024, 44 (1): 59- 66. | |
| 13 | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57 (1): 115- 122. |
| SUN Zhiyuan, PENG Boya, SUN Yan. Optimal dispatch strategy of power and electricity balance based on multi-energy complementation[J]. Electric Power, 2024, 57 (1): 115- 122. | |
| 14 | 刘军, 李凌阳, 吴梦凯, 等. 分布式抽水蓄能电站与新能源发电联合参与现货市场的两阶段优化运行策略[J]. 浙江电力, 2023, 42 (2): 50- 58. |
| LIU Jun, LI Lingyang, WU Mengkai, et al. A two-stage optimal operation strategy of distributed pumped storage power plant and new energy power generation jointly participating in spot market[J]. Zhejiang Electric Power, 2023, 42 (2): 50- 58. | |
| 15 | 秦正斌, 张午寅, 田海平, 等. 基于区域保供电和新能源消纳的常规抽水蓄能项目投资效益测算研究[J]. 湖南电力, 2025, 45 (1): 46- 53. |
| QIN Zhengbin, ZHANG Wuyin, TIAN Haiping, et al. Research on investment benefits calculation of conventional pumped storage projects based on regional power supply and new energy consumption[J]. Hunan Electric Power, 2025, 45 (1): 46- 53. | |
| 16 | 惠振国, 艾澜, 常鹏霞, 等. 计及风光出力相关性的风光水储互补系统优化调度[J]. 水电能源科学, 2024, 42 (8): 218- 222. |
| HUI Zhenguo, AI Lan, CHANG Pengxia, et al. Optimal scheduling of wind-solar-water-storage complementary system considering the correlation of wind-solar output[J]. Water Resources and Power, 2024, 42 (8): 218- 222. | |
| 17 | 刘世隆, 韦建溪, 田楠. 基于合理弃能的抽蓄-风-光-火联合发电系统多方案优化运行研究[J]. 电网与清洁能源, 2025, 41 (2): 100- 106. |
| LIU Shilong, WEI Jianxi, TIAN Nan. Research on the multi-scheme optimal operation of the pumped storage-wind-solar-thermal combined power generation system based on rational abandonment of energy[J]. Power System and Clean Energy, 2025, 41 (2): 100- 106. | |
| 18 | 张智, 霍超, 郭尊, 等. 新型电力系统下抽水蓄能集群规划与运营关键问题综述及研究展望[J]. 中国电机工程学报, 2025, 45 (15): 5810- 5832. |
| ZHANG Zhi, HUO Chao, GUO Zun, et al. Overview and research prospects of key issues in pumped storage cluster planning and operation under the new type power systems[J]. Proceedings of the CSEE, 2025, 45 (15): 5810- 5832. | |
| 19 | 田松峰, 姚静, 杨智好, 等. 基于混合储能的风光储联合发电系统优化调度策略及评价[J]. 热力发电, 2024, 53 (10): 21- 31. |
| TIAN Songfeng, YAO Jing, YANG Zhihao, et al. Optimal dispatching strategy and evaluation of wind-solar-storage combined power generation system based on hybrid energy storage[J]. Thermal Power Generation, 2024, 53 (10): 21- 31. | |
| 20 |
CHEGARI B, TABAA M, SIMEU E, et al. Optimal energy management of a hybrid system composed of PV, wind turbine, pumped hydropower storage, and battery storage to achieve a complete energy self-sufficiency in residential buildings[J]. IEEE Access, 2024, 12, 126624- 126639.
DOI |
| 21 | 赵洁, 刘涤尘, 雷庆生, 等. 核电机组参与电网调峰及与抽水蓄能电站联合运行研究[J]. 中国电机工程学报, 2011, 31 (7): 1- 6. |
| ZHAO Jie, LIU Dichen, LEI Qingsheng, et al. Analysis of nuclear power plant participating in peak load regulation of power grid and combined operation with pumped storage power plant[J]. Proceedings of the CSEE, 2011, 31 (7): 1- 6. | |
| 22 | 林国庆, 林礼清. 抽水蓄能电站与核电联合运行浅议[J]. 福建水力发电, 2016, (2): 28- 29, 32. |
| 23 | 缪晓丹, 朱朱, 陈恺. 福建省核电经济性分析及“核蓄”联营初步探讨[J]. 南方能源建设, 2020, 7 (S1): 93- 96. |
| MIAO Xiaodan, ZHU Zhu, CHEN Kai. Economic analysis of nuclear power in fujian province and preliminary discussion on "nuclear power plant-pumped storage power plant" combined operation[J]. Southern Energy Construction, 2020, 7 (S1): 93- 96. | |
| 24 | 张洪妹. 浅析福清核电调用调峰辅助服务方式研究: 核电与抽水蓄能、电化学储能一体化开发[J]. 中国能源, 2021, 43 (6): 75- 82. |
| ZHANG Hongmei. Brief analysis of Fuqing nuclear power plant peak shaving auxiliary services mode[J]. Energy of China, 2021, 43 (6): 75- 82. | |
| 25 | 罗佑坤, 钟鑫亮, 辛晟. 广东抽水蓄能电站与核电联营模式及效益研究[J]. 水电与新能源, 2022, 36 (11): 5- 7, 13. |
| LUO Youkun, ZHONG Xinliang, XIN Sheng. On the joint operation mode of pumped storage hydropower stations and nuclear power stations and its benefits[J]. Hydropower and New Energy, 2022, 36 (11): 5- 7, 13. | |
| 26 | 张志翔, 蒋龙, 严旭, 等. 基于主客观赋权的电力市场风险综合评价研究[J]. 南方能源建设, 2023, 10 (6): 160- 169. |
| ZHANG Zhixiang, JIANG Long, YAN Xu, et al. Research on comprehensive evaluation of electricity market risk based on subjective and objective weighting[J]. Southern Energy Construction, 2023, 10 (6): 160- 169. | |
| 27 | 王磊, 董平, 何玉涛, 等. 基于熵权法的电化学储能电站安全隐患数据分析[J]. 安全与环境工程, 2024, 31 (6): 9- 15, 25. |
| WANG Lei, DONG Ping, HE Yutao, et al. Data analysis of potential safety hazard of electrochemical energy storage power station based on entropy weight method[J]. Safety and Environmental Engineering, 2024, 31 (6): 9- 15, 25. |
| [1] | 许常昊, 关伟东, 王越, 张金帅, 王鹏, 周宁, 尚博文. 全功率小型变速抽水蓄能机组双层MPC虚拟惯量控制策略[J]. 中国电力, 2025, 58(2): 216-226. |
| [2] | 郑永乐, 韦仁博, 冯宇昂, 张艺涵, 崔世常, 武振宇, 蒋小亮, 李慧璇, 艾小猛, 方家琨. 农村新型电力系统精细化时序生产模拟方法[J]. 中国电力, 2025, 58(10): 71-81. |
| [3] | 王硕, 霍慧娟, 徐丹, 郄鑫, 辛诚, 李薇薇, 段婧. 计及特高压交流工程建设的区域碳减排测算及分摊[J]. 中国电力, 2024, 57(7): 163-172. |
| [4] | 王帅, 黄越辉, 聂元弘, 刘思扬. 基于生产模拟的受端电网新能源发展场景研究[J]. 中国电力, 2024, 57(5): 240-250. |
| [5] | 郭娟娟, 沈迪, 童朴, 闫琨, 张小凡, 何昉. 中国三代核电经济评价方法与参数优化[J]. 中国电力, 2024, 57(3): 206-212, 223. |
| [6] | 徐三敏, 张弓, 王放, 蒲雷. 基于CCER规则的抽水蓄能碳减排计算方法[J]. 中国电力, 2024, 57(1): 175-182. |
| [7] | 晁文浩, 袁至, 李骥. 计及电转气-风-火-核-碳捕集的多源联合系统优化调度[J]. 中国电力, 2024, 57(1): 183-194. |
| [8] | 林毅, 林威, 吴威, 江岳文, 林阿竹. 电化学储能和抽水蓄能电站参与多市场联合运行价值分析[J]. 中国电力, 2023, 56(7): 175-185. |
| [9] | 游文霞, 刘斌, 李世春, 李文武, 查子健, 张鹏宇. 风电并网下的抽水蓄能鲁棒最优调频控制策略[J]. 中国电力, 2023, 56(5): 32-40. |
| [10] | 周云海, 张智颖, 徐飞, 郭琦, 刘连德, 贾倩. 含多座抽水蓄能电站的省级电网日前计划分层递进优化算法[J]. 中国电力, 2023, 56(5): 41-50. |
| [11] | 许彦平, 施浩波, 秦晓辉, 赵明欣, 白婕, 丁保迪. 源-荷应用场景下储热式电锅炉投资经济性分析[J]. 中国电力, 2023, 56(2): 123-132. |
| [12] | 刘之琳, 许传龙, 郑海峰, 李江涛, 姚力, 刘青, 杜翼. 德国关停核电前后保供应促消纳经验分析[J]. 中国电力, 2023, 56(10): 145-152. |
| [13] | 刘赫川, 周孝信, 杨小煜, 李亚楼, 李雄. 考虑天然气季节性存储的综合能源系统年度运行方式研究[J]. 中国电力, 2022, 55(4): 145-155. |
| [14] | 桑林卫, 卫璇, 许银亮, 孙宏斌. 抽水蓄能助力风光稳定外送的最佳配置策略[J]. 中国电力, 2022, 55(12): 86-90,123. |
| [15] | 代倩, 张健, 吴俊玲, 张立波, 秦晓辉, 张彦涛, 牛彦芹. 基于多分区时序生产模拟的省级电网差异化储能规划方法[J]. 中国电力, 2022, 55(11): 21-28. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编