中国电力 ›› 2025, Vol. 58 ›› Issue (9): 23-32.DOI: 10.11930/j.issn.1004-9649.202501003
• 提升新能源和新型并网主体涉网安全能力关键技术 • 上一篇 下一篇
刘晗(
), 刘金东, 李贺, 李彦立, 于起媛, 赵远, 耿亚男
收稿日期:2025-01-02
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:
LIU Han(
), LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan
Received:2025-01-02
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
针对在含光伏电源的配电网中,现有剩余电流保护装置难以实现漏电故障的准确识别,存在误动、拒动的问题,提出一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与牛顿拉夫逊优化算法(Newton-Raphson-based optimizer,NRBO)优化梯度提升决策树(eXtreme Gradient Boosting,XGBoost)的含光伏配电网漏电故障辨识模型。首先,采用CEEMDAN对含光伏配电网的漏电信号进行分解;然后,提取分解后各模态分量的能量熵构建漏电故障特征集;最后,将能量熵特征输入到NRBO-XGBoost识别模型,实现对含光伏配电网不同漏电状态的辨识。通过仿真数据对所提方法进行验证,结果表明:与其他模型相比,所提方法具有更高的辨识精度。
刘晗, 刘金东, 李贺, 李彦立, 于起媛, 赵远, 耿亚男. 基于CEEMDAN与NRBO-XGBoost的含光伏配电网漏电故障辨识[J]. 中国电力, 2025, 58(9): 23-32.
LIU Han, LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan. Leakage Fault Identification of PV-Integrated Distribution Networks Based on CEEMDAN and NRBO-XGBoost[J]. Electric Power, 2025, 58(9): 23-32.
| 模态 分量 | 能量熵 | |||||||
| 线路正常漏电 | 光伏漏电 | 三相不平衡漏电 | 生物体触电 | |||||
| IMF1 | 3.1×10–7 | 8.3×10–7 | ||||||
| IMF2 | 7.9×10–8 | 2.3×10–7 | ||||||
| IMF3 | 8.7×10–7 | 3.4×10–6 | ||||||
| IMF4 | 7.7×10–7 | |||||||
| IMF5 | 7.3×10–7 | |||||||
| IMF6 | 7.2×10–7 | |||||||
| IMF7 | 7.1×10–7 | |||||||
| IMF8 | 6.2×10–7 | |||||||
| IMF9 | 6.5×10–7 | |||||||
| IMF10 | 8.4×10–7 | |||||||
| IMF11 | 2.4×10–5 | |||||||
| IMF12 | ||||||||
| IMF13 | ||||||||
| IMF14 | ||||||||
| IMF15 | ||||||||
表 1 IMF分量能量熵
Table 1 Energy entropy of IMF components
| 模态 分量 | 能量熵 | |||||||
| 线路正常漏电 | 光伏漏电 | 三相不平衡漏电 | 生物体触电 | |||||
| IMF1 | 3.1×10–7 | 8.3×10–7 | ||||||
| IMF2 | 7.9×10–8 | 2.3×10–7 | ||||||
| IMF3 | 8.7×10–7 | 3.4×10–6 | ||||||
| IMF4 | 7.7×10–7 | |||||||
| IMF5 | 7.3×10–7 | |||||||
| IMF6 | 7.2×10–7 | |||||||
| IMF7 | 7.1×10–7 | |||||||
| IMF8 | 6.2×10–7 | |||||||
| IMF9 | 6.5×10–7 | |||||||
| IMF10 | 8.4×10–7 | |||||||
| IMF11 | 2.4×10–5 | |||||||
| IMF12 | ||||||||
| IMF13 | ||||||||
| IMF14 | ||||||||
| IMF15 | ||||||||
| 算法 | 参数名称 | 参数值 | ||
| NRBO | 种群规模 | 20 | ||
| 最大迭代次数 | 50 | |||
| 搜索空间维度 | 3 | |||
| 避免陷进决定因素 | 0.6 | |||
| XGBoost | 决策树深度 | [1, 15] | ||
| 决策树数量 | [10, 500] | |||
| 学习率 | [ | |||
| 子节点最小权重 | 1 |
表 2 NRBO与XGBoost算法参数设置
Table 2 Parameter settings for NRBO and XGBoost algorithms
| 算法 | 参数名称 | 参数值 | ||
| NRBO | 种群规模 | 20 | ||
| 最大迭代次数 | 50 | |||
| 搜索空间维度 | 3 | |||
| 避免陷进决定因素 | 0.6 | |||
| XGBoost | 决策树深度 | [1, 15] | ||
| 决策树数量 | [10, 500] | |||
| 学习率 | [ | |||
| 子节点最小权重 | 1 |
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| XGBoost | 准确率/% | 92.5 | ||||||||
| 精确度/% | 96.7 | 85.3 | 89.3 | 100.0 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 93.3 | ||||||
| F1分数/% | 96.7 | 90.6 | 86.2 | 96.5 | ||||||
| NRBO- XGBoost | 准确率/% | 99.2 | ||||||||
| 精确度/% | 100.0 | 100.0 | 96.8 | 100.0 | ||||||
| 召回率/% | 100.0 | 100.0 | 100.0 | 96.7 | ||||||
| F1分数/% | 100.0 | 100.0 | 98.4 | 98.3 | ||||||
表 3 NRBO-XGBoost与标准XGBoost识别结果对比
Table 3 Comparison of identification results between NRBO-XGBoost and XGBoost
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| XGBoost | 准确率/% | 92.5 | ||||||||
| 精确度/% | 96.7 | 85.3 | 89.3 | 100.0 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 93.3 | ||||||
| F1分数/% | 96.7 | 90.6 | 86.2 | 96.5 | ||||||
| NRBO- XGBoost | 准确率/% | 99.2 | ||||||||
| 精确度/% | 100.0 | 100.0 | 96.8 | 100.0 | ||||||
| 召回率/% | 100.0 | 100.0 | 100.0 | 96.7 | ||||||
| F1分数/% | 100.0 | 100.0 | 98.4 | 98.3 | ||||||
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| PSO- XGBoost | 准确率/% | 94.2 | ||||||||
| 精确度/% | 96.7 | 90.6 | 100.0 | 90.9 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 100.0 | ||||||
| F1分数/% | 96.7 | 93.5 | 90.9 | 95.2 | ||||||
| CPO- XGBoost | 准确率/% | 95.0 | ||||||||
| 精确度/% | 96.7 | 96.4 | 90.6 | 96.7 | ||||||
| 召回率/% | 96.7 | 90.0 | 96.7 | 96.7 | ||||||
| F1分数/% | 96.7 | 93.1 | 93.5 | 96.7 | ||||||
表 4 不同算法优化XGBoost模型识别结果对比
Table 4 Comparison of identification results of XGBoost models optimized by different algorithms
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| PSO- XGBoost | 准确率/% | 94.2 | ||||||||
| 精确度/% | 96.7 | 90.6 | 100.0 | 90.9 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 100.0 | ||||||
| F1分数/% | 96.7 | 93.5 | 90.9 | 95.2 | ||||||
| CPO- XGBoost | 准确率/% | 95.0 | ||||||||
| 精确度/% | 96.7 | 96.4 | 90.6 | 96.7 | ||||||
| 召回率/% | 96.7 | 90.0 | 96.7 | 96.7 | ||||||
| F1分数/% | 96.7 | 93.1 | 93.5 | 96.7 | ||||||
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| NRBO-ELM | 准确率/% | 86.7 | ||||||||
| 精确度/% | 76.9 | 100.0 | 82.1 | 91.3 | ||||||
| 召回率/% | 100.0 | 100.0 | 76.7 | 70.0 | ||||||
| F1分数/% | 86.9 | 100.0 | 79.3 | 79.2 | ||||||
| NRBO-SVM | 准确率/% | 93.3 | ||||||||
| 精确度/% | 96.8 | 100.0 | 84.4 | 92.6 | ||||||
| 召回率/% | 100.0 | 100.0 | 90.0 | 83.3 | ||||||
| F1分数/% | 98.4 | 100.0 | 87.1 | 87.7 | ||||||
表 5 不同识别模型对比结果
Table 5 Comparison of identification results of different models
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| NRBO-ELM | 准确率/% | 86.7 | ||||||||
| 精确度/% | 76.9 | 100.0 | 82.1 | 91.3 | ||||||
| 召回率/% | 100.0 | 100.0 | 76.7 | 70.0 | ||||||
| F1分数/% | 86.9 | 100.0 | 79.3 | 79.2 | ||||||
| NRBO-SVM | 准确率/% | 93.3 | ||||||||
| 精确度/% | 96.8 | 100.0 | 84.4 | 92.6 | ||||||
| 召回率/% | 100.0 | 100.0 | 90.0 | 83.3 | ||||||
| F1分数/% | 98.4 | 100.0 | 87.1 | 87.7 | ||||||
| 1 | 杜松怀. 电力系统接地技术[M]. 北京: 中国电力出版社, 2011: 25–55. |
| 2 | MITOLO M. Shock hazard in the presence of protective residual-current devices[J]. IEEE Transactions on Industry Applications, 2010, 46 (4): 1552- 1557. |
| 3 |
PARISE G. A new summary on the IEC protection against electric shock[J]. IEEE Transactions on Industry Applications, 2013, 49 (2): 1004- 1011.
DOI |
| 4 |
翟苏巍, 李银银, 杜凡, 等. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57 (8): 138- 144.
DOI |
|
ZHAI Suwei, LI Yinyin, DU Fan, et al. Distributed reactive power control strategy of distribution network considering massive distributed energy access[J]. Electric Power, 2024, 57 (8): 138- 144.
DOI |
|
| 5 | 周洋, 黄德志, 李培栋, 等. 考虑平衡端点相位不对称及光伏接入的低压配电网三相潮流模型[J]. 中国电力, 2024, 57 (10): 190- 198. |
| ZHOU Yang, HUANG Dezhi, LI Peidong, et al. A three-phase power flow model for low-voltage distribution networks considering balanced bus phase asymmetry and photovoltaic access[J]. Electric Power, 2024, 57 (10): 190- 198. | |
| 6 |
胡满琳, 李楠, 李一鸣, 等. 基于负序分量的含光伏电源配电网故障区段定位方法[J]. 中国电力, 2024, 57 (5): 188- 199.
DOI |
|
HU Manlin, LI Nan, LI Yiming, et al. Fault location method for distribution network with photovoltaic power based on negative sequence component[J]. Electric Power, 2024, 57 (5): 188- 199.
DOI |
|
| 7 | 王伟, 朱江, 魏兴慎, 等. 面向新型配电系统的网络安全脆弱性评估[J]. 电力信息与通信技术, 2024, 22 (8): 37- 44. |
| WANG Wei, ZHU Jiang, WEI Xingshen. Network security vulnerability assessment for new distribution systems[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 37- 44. | |
| 8 | 慕静茹, 喻锟, 曾祥君, 等. 考虑多扰动因子的含光伏电源低压台区漏电故障检测[J]. 南方电网技术, 2024, 18 (10): 130- 141. |
| MU Jingru, YU Kun, ZENG Xiangjun, et al. Leakage fault detection in low-voltage station area with photovoltaic power supply considering multi- disturbance factor[J]. Southern Power System Technology, 2024, 18 (10): 130- 141. | |
| 9 | LI K, LIN J Y, NIU F, et al. A novel fault leakage current detection method with protection deadzone elimination[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70, 3505009. |
| 10 | 汪自虎, 王文天, 惠慧, 等. 基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别[J]. 电高压电器, 2024, 60 (6): 0203- 02111. |
| WANG Zhihu, WANG Wentian, HUI Hui, et al. Leakage recognition method of photovoltaic connected to distribution network based on neighborhood component analysis and optimized kernel extreme learning machine[J]. High Voltage Apparatus, 2024, 60 (6): 0203- 02111. | |
| 11 | 蔡智萍, 郭谋发, 魏正峰. 基于BP神经网络的低压配电网生命体触电识别方法研究[J]. 电网技术, 2022, 46 (4): 1614- 1623. |
| CAI Zhiping, GUO Moufa, WEI Zhengfeng. Research on recognition method of living body shock in low-voltage distribution network based on BP neural network[J]. Power System Technology, 2022, 46 (4): 1614- 1623. | |
| 12 | 李春兰, 罗杰, 石砦, 等. 基于小波分析和概率神经网络的触电事故识别方法[J]. 江苏大学学报(自然科学版), 2023, 44 (1): 75- 81, 88. |
| LI Chunlan, LUO Jie, SHI Zhai, et al. Electric shock identification method based on probabilistic neural network and wavelet analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44 (1): 75- 81, 88. | |
| 13 | 徐寒, 朱三立, 张腾飞, 等. 低压配电系统剩余电流保护与重合闸逻辑组合优化方法[J]. 上海交通大学学报, 2025, 59 (7): 901- 911. |
| XU Han, ZHU Sanli, ZHANG Tengfei, et al. Optimization method of residual current protection and coincidence brake logic combination of low voltage distribution system[J]. Journal of Shanghai Jiaotong University, 2025, 59 (7): 901- 911. | |
| 14 | 韩晓慧, 杜松怀, 苏娟, 等. 触电信号暂态特征提取及故障类型识别方法[J]. 电网技术, 2016, 40 (11): 3591- 3596. |
| HAN Xiaohui, DU Songhuai, SU Juan, et al. Fault transient feature extraction and fault type identification for electrical shock signals[J]. Power System Technology, 2016, 40 (11): 3591- 3596. | |
| 15 | 李春兰, 罗杰, 王长云, 等. 基于循环谱特征和聚类分析的触电识别[J]. 电工技术学报, 2021, 36 (22): 4677- 4686. |
| LI Chunlan, LUO Jie, WANG Changyun, et al. Electric shock recognition method based on cyclic spectrum features and cluster analysis[J]. Transactions of China Electrotechnical Society, 2021, 36 (22): 4677- 4686. | |
| 16 | 高伟, 饶俊民, 全圣鑫, 等. 不均衡小样本下多特征优化选择的生命体触电故障识别方法[J]. 电工技术学报, 2024, 4 (39): 2060- 2071. |
| GAO Wei, RAO Junmin, QUAN Shengxin, et al. Biological electric-shock fault identification method based on multi-feature optimization selection under unbalanced small sample[J]. Transactions of China Electrotechnical Society, 2024, 4 (39): 2060- 2071. | |
| 17 | 刘斌, 吉春霖, 曹丽君, 等. 基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2024, 52 (15): 167- 177. |
| LIU Bin, JI Chunlin, CAO Lijun, et al. Prediction of remaining service life of lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise and BiLSTM-Transformer[J]. Power System Protection and Control, 2024, 52 (15): 167- 177. | |
| 18 | 刘友波, 吴浩, 刘挺坚, 等. 集成经验模态分解与深度学习的用户侧净负荷预测算法[J]. 电力系统自动化, 2021, 45 (24): 57- 64. |
| LIU Youbo, WU Hao, LIU Tingjian, et al. User-side net load forecasting method integrating empirical mode decomposition and deep learning[J]. Automation of electric power systems, 2021, 45 (24): 57- 64. | |
| 19 |
GAO Z H, LIU Y, WANG Q J, et al. Ensemble empirical mode decomposition energy moment entropy and enhanced long short-term memory for early fault prediction of bearing[J]. Measurement, 2022, 188, 110417.
DOI |
| 20 |
SOWMYA R, PREMKUMAR M, JANGIR P. Newton-raphson-based optimizer: a new population-based metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 128, 107532.
DOI |
| 21 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, 2016: 785–794. |
| 22 |
庄家懿, 杨国华, 郑豪丰, 等. 基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法[J]. 中国电力, 2021, 54 (5): 46- 55.
DOI |
|
ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Short-term load forecasting method based on multi-model fusion using CNN-LSTM-XGBoost framework[J]. Electric Power, 2021, 54 (5): 46- 55.
DOI |
|
| 23 | 柯亮, 李波, 廖凯, 等. 基于XGBoost的配电网高阻接地故障检测方法[J]. 电力系统保护与控制, 2024, 52 (6): 88- 98. |
| KE Liang, LI Bo, LIAO Kai, et al. High impedance fault detection method in a distribution network based on XGBoost[J]. Power System Protection and Control, 2024, 52 (6): 88- 98. | |
| 24 | 范兴明, 许洪华, 李涛, 等. 基于SMA-VMD 和能量熵的高压断路器故障诊断[J]. 高电压技术, 2024, 50 (12): 5248- 5258. |
| FAN Xingming, XU Honghua, LI Tao, et al. Fault diagnosis of high-voltage circuit breakers based on SMA-VMD and energy entropy[J]. High Voltage Engineering, 2024, 50 (12): 5248- 5258. | |
| 25 | 刘永梅, 盛万兴, 杜松怀. 一种面向剩余电流保护装置的触电阻抗建模方法[J]. 河北工业大学学报, 2017, 46 (4): 15- 23. |
| LIU Yongmei, SHENG Wanxing, DU Songhuai. An electric shock impedance modeling method of living organisms in low-voltage distribution network[J]. Journal of Hebei University of Technology, 2017, 46 (4): 15- 23. |
| [1] | 吉兴全, 张祥星, 张玉敏, 叶平峰, 王德龙, 黄心月. 基于LSD算法的多分支配电网故障定位[J]. 中国电力, 2025, 58(9): 54-67. |
| [2] | 赵珊珊, 高菲, 李雅洁, 李建芳, 张瑜, 段祥骏, 董伟杰. 基于改进模因算法的含微网群的柔性配电网多目标优化控制[J]. 中国电力, 2025, 58(9): 97-104. |
| [3] | 王世谦, 韩丁, 王楠, 白宏坤, 宋大为, 胡彩红. 基于双层主从博弈的主动配电网协同调度[J]. 中国电力, 2025, 58(9): 105-114. |
| [4] | 栗志鹏, 刘少博, 杨浩, 董蕊, 祁琛峰, 沈硕, 赵鹏. 基于PSO的配电网谐波抑制与降损增效协同优化[J]. 中国电力, 2025, 58(8): 50-59. |
| [5] | 刘军会, 龚健, 佟炳绅, 李松杰, 张艺涵, 崔世常, 田春筝, 张永斌. 基于分布式储能与光伏的虚拟电厂与配电网协同优化方法[J]. 中国电力, 2025, 58(6): 1-9. |
| [6] | 王方敏, 顼佳宇, 苏宁, 牛焕娜, 袁嘉兴, 门盼龙. 新型电力系统风险抑制下分布式光伏承载力概率评估方法[J]. 中国电力, 2025, 58(6): 33-44. |
| [7] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
| [8] | 李鹏, 祖文静, 刘一欣, 田春筝, 郝元钊, 李慧璇. 基于不完全量测数据的配电网状态估计方法[J]. 中国电力, 2025, 58(5): 1-10. |
| [9] | 汪进锋, 李金鹏, 许银亮, 刘海涛, 何锦雄, 许建远. 考虑不确定性和绿证交易的虚拟电厂与配电网分布式优化[J]. 中国电力, 2025, 58(4): 21-30, 192. |
| [10] | 徐慧慧, 田云飞, 赵宇洋, 彭婧, 石庆鑫, 成锐. 基于条件生成对抗网络与多智能体强化学习的配电网可靠性评估方法[J]. 中国电力, 2025, 58(4): 230-236. |
| [11] | 鲍红焉, 刘吉成, 刘子毅, 孙嘉康. 考虑电氢混合储能容量配置的主动配电网双层优化模型[J]. 中国电力, 2025, 58(10): 27-38. |
| [12] | 廖建, 张耀, 张贝西, 董浩淼, 李嘉兴, 孙乾皓. 考虑电动汽车需求响应的交直流混合配电网智能软开关与储能装置鲁棒联合规划方法[J]. 中国电力, 2025, 58(10): 82-96. |
| [13] | 廖家齐, 于若英, 叶荣波, 熊俊杰, 夏俊荣. 含高比例户用光伏的低压配电网协调控制方法[J]. 中国电力, 2025, 58(10): 110-120, 135. |
| [14] | 齐桓若, 陈晨, 郭放, 薛文杰, 闫向阳, 康祎龙, 刘俊成, 马思源. 考虑精细化充放电与碳效益的配电网储能多目标双层规划模型[J]. 中国电力, 2025, 58(10): 121-135. |
| [15] | 李岳华, 王帅, 马卓然, 杨智明, 廖小兵. 基于混合电力电子变压器的配电网潮流优化调控方法[J]. 中国电力, 2025, 58(10): 171-179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编