中国电力 ›› 2025, Vol. 58 ›› Issue (9): 23-32.DOI: 10.11930/j.issn.1004-9649.202501003

• 提升新能源和新型并网主体涉网安全能力关键技术 • 上一篇    下一篇

基于CEEMDAN与NRBO-XGBoost的含光伏配电网漏电故障辨识

刘晗(), 刘金东, 李贺, 李彦立, 于起媛, 赵远, 耿亚男   

  1. 国网北京市电力公司平谷供电公司,北京 101200
  • 收稿日期:2025-01-02 发布日期:2025-09-26 出版日期:2025-09-28
  • 作者简介:
    刘晗(1988),男,通信作者,硕士,高级工程师,从事配电自动化研究,E-mail:liuhan0914@163.com
  • 基金资助:
    国网北京市电力公司科技项目(低压交直流混合配电网漏电故障机理研究与保护装置开发,520213240001)。

Leakage Fault Identification of PV-Integrated Distribution Networks Based on CEEMDAN and NRBO-XGBoost

LIU Han(), LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan   

  1. State Grid Beijing Pinggu Power Supply Company, Beijing 101200, China
  • Received:2025-01-02 Online:2025-09-26 Published:2025-09-28
  • Supported by:
    This work is supported by State Grid Beijing Electric Power Company Technology Project (Research on Leakage Fault Mechanism and Protection Device Development of Low Voltage AC/DC Hybrid Distribution Network, No.520213240001).

摘要:

针对在含光伏电源的配电网中,现有剩余电流保护装置难以实现漏电故障的准确识别,存在误动、拒动的问题,提出一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与牛顿拉夫逊优化算法(Newton-Raphson-based optimizer,NRBO)优化梯度提升决策树(eXtreme Gradient Boosting,XGBoost)的含光伏配电网漏电故障辨识模型。首先,采用CEEMDAN对含光伏配电网的漏电信号进行分解;然后,提取分解后各模态分量的能量熵构建漏电故障特征集;最后,将能量熵特征输入到NRBO-XGBoost识别模型,实现对含光伏配电网不同漏电状态的辨识。通过仿真数据对所提方法进行验证,结果表明:与其他模型相比,所提方法具有更高的辨识精度。

关键词: 光伏电源, 配电网, 牛顿拉夫逊法, 梯度提升决策树, 漏电故障识别

Abstract:

To address the problem that existing residual current protection devices are difficult to accurately identify leakage faults in the PV-integrated distribution networks, a leakage fault identification model for photovoltaic-integrated distribution networks based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Newton-Raphson-based optimizer-eXtreme Gradient Boosting (NRBO-XGBoost) is presented. Firstly, the CEEMDAN is used to decompose different leakage signals of the PV-integrated distribution networks. Then, the energy entropy of each decomposed modal component is extracted to construct the leakage fault feature set. Finally, the energy entropy features are input into the NRBO-XGBoost model to achieve the recognition of different leakage states of PV-integrated distribution networks. The effectiveness of the proposed method is verified by the simulation data. The results show that compared with other models, the proposed method has the highest recognition accuracy.

Key words: photovoltaic power supply, distribution network, Newton-Raphson-based optimizer, extreme gradient boosting, leakage fault identification


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?