中国电力 ›› 2025, Vol. 58 ›› Issue (9): 33-43.DOI: 10.11930/j.issn.1004-9649.202410050

• 提升新能源和新型并网主体涉网安全能力关键技术 • 上一篇    下一篇

基于AHFS与RBF的光储VSG虚拟惯量灵活控制研究

肖湘奇1,2(), 邓汉钧1,2, 邹晟1,2, 肖建红1,2, 李恺1,2, 马斌1,2   

  1. 1. 国网湖南省电力有限公司供电服务中心,湖南 长沙 410004
    2. 智能电气量测与应用技术湖南省重点实验室,湖南 长沙 410004
  • 收稿日期:2024-10-15 发布日期:2025-09-26 出版日期:2025-09-28
  • 作者简介:
    肖湘奇(1989),男,通信作者,硕士,高级工程师,从事电能计量及用电安全技术等研究,E-mail:84578610@qq.com
  • 基金资助:
    国网湖南省电力有限公司科技项目(5216AG22000V)。

Virtual Inertia Flexible Control of Photovoltaic Storage VSG Based on AHFS and RBF

XIAO Xiangqi1,2(), DENG Hanjun1,2, ZOU Sheng1,2, XIAO Jianhong1,2, LI Kai1,2, MA Bin1,2   

  1. 1. State Grid Hunan Electric Power Company Limited Power Supply Service Center, Changsha 410004, China
    2. Hunan Key Laboratory of Intelligent Electrical Measurement & Application Technology, Changsha 410004, China
  • Received:2024-10-15 Online:2025-09-26 Published:2025-09-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Hunan Electric Power Company Limited (No.5216AG22000V).

摘要:

针对传统光储虚拟同步发电机(virtual synchronous generator,VSG)并网存在有功超调和系统动态振荡的问题,提出一种基于有功高频反馈抑制(active high-frequency feedback suppression,AHFS)与径向基函数(radial basis function,RBF)的光储VSG虚拟惯量灵活控制策略。引入一阶滤波环节,提高系统高频抑制能力,在功率反馈环节中加入有功微分项,改变系统的动态性能;构造考虑系统有功超调量和上升时间2项指标的目标函数,利用粒子群算法求解有功微分系数的最优值;结合RBF神经网络设计虚拟惯量自适应调节控制策略,根据系统角速度及其变化率实时在线灵活调整虚拟惯量。联合控制方法有效改善了传统VSG存在输出有功超调和频率过冲问题。结果表明,所提控制策略可有效抑制频率偏差和有功超调,提升了系统的暂态稳定性。

关键词: 光储VSG, 电网扰动, 频率偏差, 有功振荡, RBF神经网络

Abstract:

To address the issue of active power overshoot and the challenge of system dynamic oscillations in grid integration of traditional photovoltaic and energy storage virtual synchronous generators (VSGs), This article proposes a virtual inertia flexible control strategy for photovoltaic storage VSG based on active high-frequency feedback suppression (AHFS) and radial basis function (RBF). Firstly, a first-order filtering link is introduced to enhance the system's high-frequency suppression capability, and an active power differential term is added to the power feedback loop to modify the dynamic performance of the system. Secondly, an objective function considering both active power overshoot and rise time is constructed, and the optimal active power differential coefficient is determined via particle swarm optimization (PSO) algorithm. Finally, an adaptive control strategy for virtual inertia is designed using RBF neural network, which can flexibly adjust the virtual inertia in real-time based on the system's angular velocity and its rate of change. The coordinated control method effectively mitigates the issues of power overshoot and frequency overshooting in traditional VSGs. Simulation results show that the proposed control strategy can effectively suppress frequency deviation and active power overshoot, thereby enhancing the system's transient stability.

Key words: photovoltaic storage VSG, grid disturbance, frequency deviation, active power oscillation, RBF neural network


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?