中国电力 ›› 2013, Vol. 46 ›› Issue (1): 16-20.DOI: 10.11930/j.issn.1004-9649.2013.1.16.4

• 新能源 • 上一篇    下一篇

基于遗传算法和微分进化算法的分布式电源优化配置

袁沔齐1, 邹振宇1, 孙凯祺2, 刘合金2, 李可军2   

  1. 1. 山东电力工程咨询院有限公司, 山东 济南 250013;
    2. 山东大学 电气工程学院, 山东 济南 250061
  • 收稿日期:2012-06-30 出版日期:2013-01-05 发布日期:2015-12-09
  • 作者简介:袁沔齐(1961—),男,山东济南人,高级工程师,从事输变电工程设计领域研究工作。E-mail: sdulhj@163.com

Optimal Allocation of Distributed Generation Based onGenetic Algorithms and Differential Evolution Algorithm

YUAN Mian-qi1, ZOU Zhen-yu1, SUN Kai-qi2, LIU He-jin2, LI Ke-jun2   

  1. 1. Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan 250013, China;
    2. School of Electrical Engineering of Shandong University, Jinan 250061, China
  • Received:2012-06-30 Online:2013-01-05 Published:2015-12-09

摘要: 配电系统中,分布式电源(DG)安装位置的选择、额定容量的确定对于电网规划、设计和投资至关重要,以10节点配电网系统为例,采用遗传算法和微分进化算法对分布式电源进行了优化配置,建立了DG的不确定性模型,并将其加入到优化分析中,给出了优化算法的求解程序。对含DG的配电网进行了潮流计算,分析了DG容量与系统总网损的关系。算例分析结果表明,优化配置有效改善了配电网的电压分布,减小了网损,提高了系统负荷率,说明了该优化配置方法合理、有效。

关键词: 分布式电源, 优化配置, 不确定性模型, 遗传算法, 微分进化算法

Abstract: Selection of the position and rated capacity of the distributed generation (DG) is crucial for power system in planning, design and investment. Genetic algorithm and differential evolution algorithm are adopted for the optimal allocation of DG based on a 10-node distribution network and an uncertainty DG model is built and added into the optimization analysis with an optimization algorithm program. The load flow is calculated for a distribution network with DG and the relation between installed DG capacity and the system’s total transmission loss is analyzed. The computational example shows that the proposed method of optimal allocation is reasonable and effective in improving the voltage distribution of distribution network, reducing transmission loss and improving the system’s output factor.

Key words: Distributed generation, optimal allocation, uncertainty model, genetic algorithm, differential evolution algorithm

中图分类号: