中国电力 ›› 2023, Vol. 56 ›› Issue (10): 124-132.DOI: 10.11930/j.issn.1004-9649.202305113
张朋1(), 张健1(
), 杨航2, 曲利民1, 刘贺千1, 于沐禾2(
)
收稿日期:
2023-05-26
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
张朋(1991—),男,通信作者,硕士,工程师,从事电力设备状态监测及故障诊断研究,E-mail: 275432669@qq.com基金资助:
Peng ZHANG1(), Jian ZHANG1(
), Hang YANG2, Limin QU1, Heqian LIU1, Muhe YU2(
)
Received:
2023-05-26
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
油纸绝缘作为油浸式电力变压器的重要组成部分,其绝缘状态的可靠对维护变压器的稳定运行至关重要。为准确获得油纸绝缘频域介电响应特性与其绝缘状态的关系,开展了老化、受潮油纸绝缘试样的频域介电响应测试,并基于扩展Debye模型,提出了采用改进非支配排序遗传算法(non-dominated sorting genetic algorithm,NSGA)的油纸绝缘宽频介电特征参数的识别方法,通过油纸绝缘复电容的频谱曲线,完成了扩展Debye模型特征参数的准确提取。考虑特征参数信息熵的权重关系,建立了模型特征参数与绝缘水分含量及老化程度的定量表征方程。通过该方法可实现油纸绝缘状态的量化分析,为油浸式电力设备绝缘状态的准确评估提供理论支撑。
张朋, 张健, 杨航, 曲利民, 刘贺千, 于沐禾. 基于改进NSGA多目标值优化的油纸绝缘状态评估方法[J]. 中国电力, 2023, 56(10): 124-132.
Peng ZHANG, Jian ZHANG, Hang YANG, Limin QU, Heqian LIU, Muhe YU. Improved NSGA Multi-objective Optimization Based Oil-Paper Insulation Status Assessment Method[J]. Electric Power, 2023, 56(10): 124-132.
模型参数 | 水分含量 | |||||||
1.13% | 2.24% | 3.28% | 4.08% | |||||
R2-C′ | 0.9962 | 0.9971 | 0.9968 | 0.9962 | ||||
R2-C′′ | 0.9978 | 0.9985 | 0.9977 | 0.9981 | ||||
C0/nF | 0.1135 | 0.1660 | 0.1165 | 0.1152 | ||||
R0/GΩ | 899.8930 | 455.8450 | 254.5610 | 180.0010 | ||||
C1/nF | 0.0070 | 0.1000 | 0.3199 | 0.5998 | ||||
R1/GΩ | 174.7160 | 131.1760 | 74.9990 | 57.7011 | ||||
C2/nF | 0.0011 | 0.0080 | 0.0376 | 0.0800 | ||||
R2/GΩ | 124.9890 | 93.4900 | 25.9690 | 7.9960 | ||||
C3/nF | 0.0010 | 0.0035 | 0.0080 | 0.0172 | ||||
R3/GΩ | 62.5310 | 26.6790 | 5.6138 | 2.1550 | ||||
C4/nF | 0.0009 | 0.0014 | 0.0040 | 0.0047 | ||||
R4/GΩ | 8.1020 | 4.7950 | 0.5015 | 0.3779 | ||||
C5/nF | 0.0008 | 0.0010 | 0.0030 | 0.0041 | ||||
R5/GΩ | 0.8000 | 0.4898 | 0.1000 | 0.0194 | ||||
C6/nF | 0.0007 | 0.0014 | 0.0030 | 0.0034 | ||||
R6/GΩ | 0.1640 | 0.0445 | 0.0100 | 0.0006 |
表 1 不同水分含量下扩展Debye模型参数
Table 1 Extended Debye model parameters at different moisture content
模型参数 | 水分含量 | |||||||
1.13% | 2.24% | 3.28% | 4.08% | |||||
R2-C′ | 0.9962 | 0.9971 | 0.9968 | 0.9962 | ||||
R2-C′′ | 0.9978 | 0.9985 | 0.9977 | 0.9981 | ||||
C0/nF | 0.1135 | 0.1660 | 0.1165 | 0.1152 | ||||
R0/GΩ | 899.8930 | 455.8450 | 254.5610 | 180.0010 | ||||
C1/nF | 0.0070 | 0.1000 | 0.3199 | 0.5998 | ||||
R1/GΩ | 174.7160 | 131.1760 | 74.9990 | 57.7011 | ||||
C2/nF | 0.0011 | 0.0080 | 0.0376 | 0.0800 | ||||
R2/GΩ | 124.9890 | 93.4900 | 25.9690 | 7.9960 | ||||
C3/nF | 0.0010 | 0.0035 | 0.0080 | 0.0172 | ||||
R3/GΩ | 62.5310 | 26.6790 | 5.6138 | 2.1550 | ||||
C4/nF | 0.0009 | 0.0014 | 0.0040 | 0.0047 | ||||
R4/GΩ | 8.1020 | 4.7950 | 0.5015 | 0.3779 | ||||
C5/nF | 0.0008 | 0.0010 | 0.0030 | 0.0041 | ||||
R5/GΩ | 0.8000 | 0.4898 | 0.1000 | 0.0194 | ||||
C6/nF | 0.0007 | 0.0014 | 0.0030 | 0.0034 | ||||
R6/GΩ | 0.1640 | 0.0445 | 0.0100 | 0.0006 |
模型参数 | 拟合方程 | R2 | ||
C1/nF | Kmc%=4.332×C10.416+0.578 | 0.999 | ||
C2/nF | Kmc%=8.387×C20.195–1.076 | 0.995 | ||
R0/GΩ | Kmc%=35.060×R0–0.286–3.857 | 0.999 | ||
R1/GΩ | Kmc%=0.253×R10.603+6.894 | 0.956 | ||
R2/GΩ | Kmc%=–0.028×R20.959+4.150 | 0.966 |
表 2 模型参数与水分含量的拟合关系
Table 2 Fitting relationship between model parameters and moisture content
模型参数 | 拟合方程 | R2 | ||
C1/nF | Kmc%=4.332×C10.416+0.578 | 0.999 | ||
C2/nF | Kmc%=8.387×C20.195–1.076 | 0.995 | ||
R0/GΩ | Kmc%=35.060×R0–0.286–3.857 | 0.999 | ||
R1/GΩ | Kmc%=0.253×R10.603+6.894 | 0.956 | ||
R2/GΩ | Kmc%=–0.028×R20.959+4.150 | 0.966 |
模型参数 | 聚合度 | |||||||
1013 | 624 | 518 | 389 | |||||
R2-C′ | 0.9982 | 0.9967 | 0.9969 | 0.9978 | ||||
R2-C′′ | 0.9987 | 0.9975 | 0.9971 | 0.9952 | ||||
C0/nF | 0.1135 | 0.1155 | 0.1163 | 0.1161 | ||||
R0/GΩ | 899.8931 | 758.2047 | 449.6251 | 334.9625 | ||||
C1/nF | 0.0072 | 0.1673 | 0.3219 | 0.6613 | ||||
R1/GΩ | 174.7159 | 156.8246 | 79.7452 | 52.2314 | ||||
C2/nF | 0.0011 | 0.0614 | 0.0843 | 0.0900 | ||||
R2/GΩ | 124.9885 | 43.4128 | 32.4279 | 30.7560 | ||||
C3/nF | 0.0010 | 0.0034 | 0.0094 | 0.0627 | ||||
R3/GΩ | 62.5310 | 38.3486 | 28.5869 | 17.1239 | ||||
C4/nF | 0.0009 | 0.0012 | 0.0015 | 0.0031 | ||||
R4/GΩ | 8.1018 | 7.3523 | 6.9395 | 4.6358 | ||||
C5/nF | 0.0008 | 0.0011 | 0.0012 | 0.0030 | ||||
R5/GΩ | 0.8000 | 0.5042 | 0.2703 | 0.1246 | ||||
C6/nF | 0.0007 | 0.0013 | 0.0012 | 0.0022 | ||||
R6/GΩ | 0.1635 | 0.0168 | 0.0054 | 0.0015 |
表 3 不同老化程度下的扩展德拜模型参数
Table 3 Extended Debye model parameters at different aging
模型参数 | 聚合度 | |||||||
1013 | 624 | 518 | 389 | |||||
R2-C′ | 0.9982 | 0.9967 | 0.9969 | 0.9978 | ||||
R2-C′′ | 0.9987 | 0.9975 | 0.9971 | 0.9952 | ||||
C0/nF | 0.1135 | 0.1155 | 0.1163 | 0.1161 | ||||
R0/GΩ | 899.8931 | 758.2047 | 449.6251 | 334.9625 | ||||
C1/nF | 0.0072 | 0.1673 | 0.3219 | 0.6613 | ||||
R1/GΩ | 174.7159 | 156.8246 | 79.7452 | 52.2314 | ||||
C2/nF | 0.0011 | 0.0614 | 0.0843 | 0.0900 | ||||
R2/GΩ | 124.9885 | 43.4128 | 32.4279 | 30.7560 | ||||
C3/nF | 0.0010 | 0.0034 | 0.0094 | 0.0627 | ||||
R3/GΩ | 62.5310 | 38.3486 | 28.5869 | 17.1239 | ||||
C4/nF | 0.0009 | 0.0012 | 0.0015 | 0.0031 | ||||
R4/GΩ | 8.1018 | 7.3523 | 6.9395 | 4.6358 | ||||
C5/nF | 0.0008 | 0.0011 | 0.0012 | 0.0030 | ||||
R5/GΩ | 0.8000 | 0.5042 | 0.2703 | 0.1246 | ||||
C6/nF | 0.0007 | 0.0013 | 0.0012 | 0.0022 | ||||
R6/GΩ | 0.1635 | 0.0168 | 0.0054 | 0.0015 |
模型参数 | 拟合方程 | R2 | ||
C1/nF | KDP=653.04×exp(–5.49×C1)+381.90 | 0.995 | ||
C2/nF | KDP=exp(6.94–9.07×C2) | 0.967 | ||
R0/GΩ | KDP=exp(5.41+0.002×R0) | 0.953 | ||
R1/GΩ | KDP=0.01×exp(0.07×R1)+452.05 | 0.962 | ||
R2/GΩ | KDP=exp(5.96+0.01×C2) | 0.956 |
表 4 模型参数与聚合度的拟合关系式
Table 4 Fitting relationship between model parameters and degree of polymerization
模型参数 | 拟合方程 | R2 | ||
C1/nF | KDP=653.04×exp(–5.49×C1)+381.90 | 0.995 | ||
C2/nF | KDP=exp(6.94–9.07×C2) | 0.967 | ||
R0/GΩ | KDP=exp(5.41+0.002×R0) | 0.953 | ||
R1/GΩ | KDP=0.01×exp(0.07×R1)+452.05 | 0.962 | ||
R2/GΩ | KDP=exp(5.96+0.01×C2) | 0.956 |
1 | 王飞风, 郭金明, 田树军, 等. 微水含量及老化状态对绝缘硅油介电特性的影响[J]. 中国电力, 2022, 55 (3): 48- 56. |
WANG Feifeng, GUO Jinming, TIAN Shujun, et al. Effect of moisture content and aging state on the dielectric properties of silicone oil[J]. Electric Power, 2022, 55 (3): 48- 56. | |
2 |
刘庆珍, 黄昌硕. 基于FCBF特征选择和XGBoost原则的油纸绝缘介电响应特征量优选研究[J]. 电力系统保护与控制, 2022, 50 (15): 50- 59.
DOI |
LIU Qingzhen, HUANG Changshuo. Optimization of dielectric response characteristics of oil paper insulation based on FCBF feature selection and the XGBoost principle[J]. Power System Protection and Control, 2022, 50 (15): 50- 59.
DOI |
|
3 | 刘琴, 谢雄杰, 胡伟, 等. 油绝缘典型电极放电产气特性对比分析[J]. 中国电力, 2021, 54 (12): 186- 194. |
LIU Qin, XIE Xiongjie, HU Wei, et al. Comparative analysis on discharge gas production characteristics of typical electrodes with oil insulation[J]. Electric Power, 2021, 54 (12): 186- 194. | |
4 | 杨丽君, 邓帮飞, 廖瑞金, 等. 应用时-温-水分叠加方法改进油纸绝缘热老化寿命模型[J]. 中国电机工程学报, 2011, 31 (31): 196- 203. |
YANG Lijun, DENG Bangfei, LIAO Ruijin, et al. Improvement of lifetime model on thermal aging of oil-paper insulation by time-temperature-moisture superposition method[J]. Proceedings of the CSEE, 2011, 31 (31): 196- 203. | |
5 |
吴楠, 李晓楠, 李赫, 等. 高频电老化过程中油纸绝缘表面电荷积聚消散特性[J]. 南方电网技术, 2022, 16 (7): 40- 45, 75.
DOI |
WU Nan, LI Xiaonan, LI He, et al. Accumulation and decay characteristics of charges on oil-paper insulated surface under high frequency electrical aging process[J]. Southern Power System Technology, 2022, 16 (7): 40- 45, 75.
DOI |
|
6 |
田天, 周秀, 丁培, 等. 交直流电压下油纸绝缘典型缺陷的局部放电特征[J]. 电力科学与技术学报, 2021, 36 (6): 40- 46.
DOI |
TIAN Tian, ZHOU Xiu, DING Pei, et al. Partial discharge characteristics of typical defects in oil paper insulation under AC and DC voltage[J]. Journal of Electric Power Science and Technology, 2021, 36 (6): 40- 46.
DOI |
|
7 |
姚欢民, 穆海宝, 张大宁, 等. 基于灰色关联与时-频域介电响应的油纸绝缘受潮状态快速评估方法[J]. 绝缘材料, 2023, 56 (3): 54- 60.
DOI |
YAO Huanmin, MU Haibao, ZHANG Daning, et al. Rapid evaluation method of oil-paper insulation damp condition based on grey correlation and time-frequency domain dielectric response[J]. Insulating Materials, 2023, 56 (3): 54- 60.
DOI |
|
8 |
范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36 (10): 2161- 2168.
DOI |
FAN Xianhao, LIU Jiefeng, ZHANG Yiyi, et al. Aging evaluation of transformer oil-immersed insulation combining frequency domain spectroscopy and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36 (10): 2161- 2168.
DOI |
|
9 |
胡一卓, 董明, 谢佳成, 等. 油纸绝缘宽频介电响应谱分析及等效模型研究[J]. 中国电机工程学报, 2019, 39 (23): 7065- 7073, 7119.
DOI |
HU Yizhuo, DONG Ming, XIE Jiacheng, et al. Spectrum analyzing and modeling of wide-band frequency dielectric response of oil-paper insulation[J]. Proceedings of the CSEE, 2019, 39 (23): 7065- 7073, 7119.
DOI |
|
10 |
刘骥, 张明泽, 赵春明, 等. 基于频域介电响应分频段优化计算的变压器油纸绝缘老化参数定量计算方法[J]. 电工技术学报, 2020, 35 (9): 2020- 2031.
DOI |
LIU Ji, ZHANG Mingze, ZHAO Chunming, et al. Quantitative calculation method of transformer oil-paper insulation aging parameters based on frequency dielectric spectrum frequency range optimized calculation[J]. Transactions of China Electrotechnical Society, 2020, 35 (9): 2020- 2031.
DOI |
|
11 |
SAHA T K, PURKAIT P, MULLER F. Deriving an equivalent circuit of transformers insulation for understanding the dielectric response measurements[J]. IEEE Transactions on Power Delivery, 2005, 20 (1): 149- 157.
DOI |
12 |
TUNCER E, GUBANSKI S M. Electrical properties of filled silicone rubber[J]. Journal of Physics:Condensed Matter, 2000, 12 (8): 1873- 1897.
DOI |
13 | 张寒, 胡伟, 许佐明, 等. 温度对环氧胶浸纸套管FDS特性的影响[J]. 中国电力, 2021, 54 (10): 186- 195. |
ZHANG Han, HU Wei, XU Zuoming, et al. Effect of temperature on FDS characteristics of resin impregnated paper bushing[J]. Electric Power, 2021, 54 (10): 186- 195. | |
14 |
WOLNY S, ADAMOWICZ A, LEPICH M. Influence of temperature and moisture level in paper-oil insulation on the parameters of the cole-cole model[J]. IEEE Transactions on Power Delivery, 2014, 29 (1): 246- 250.
DOI |
15 | 张涛, 王铄, 杨文雁, 等. 基于Debye介电模型参数辨识的油纸绝缘状态评估[J]. 水电能源科学, 2020, 38 (1): 178- 181. |
ZHANG Tao, WANG Shuo, YANG Wenyan, et al. Oil-paper insulation evaluation based on parameter identification of Debye dielectric model[J]. Water Resources and Power, 2020, 38 (1): 178- 181. | |
16 |
杨丽君, 齐超亮, 邓帮飞, 等. 采用修正Cole-Cole模型提取油纸绝缘频域介电谱的特征参量方法[J]. 高电压技术, 2013, 39 (2): 310- 317.
DOI |
YANG Lijun, QI Chaoliang, DENG Bangfei, et al. Application of modified Cole-Cole model to extract characteristics of frequency dielectric spectroscopy of oil-paper insulation[J]. High Voltage Engineering, 2013, 39 (2): 310- 317.
DOI |
|
17 |
成立, 夏彦卫, 高树国, 等. 基于混合电场线性叠加原理的换流变压器内部电场分布规律研究[J]. 智慧电力, 2021, 49 (1): 90- 95.
DOI |
CHENG Li, XIA Yanwei, GAO Shuguo, et al. Study on distribution law of internal electric field in converter transformer based on linear superposition principle of mixed electric field[J]. Smart Power, 2021, 49 (1): 90- 95.
DOI |
|
18 |
ZAENGL W S. Dielectric spectroscopy in time and frequency domain for HV power equipment. I. Theoretical considerations[J]. IEEE Electrical Insulation Magazine, 2003, 19 (5): 5- 19.
DOI |
19 |
杜林, 杨峰, 蔚超, 等. 基于频域介电谱的油纸绝缘宽频等效模型参数辨识研究[J]. 电工技术学报, 2018, 33 (5): 1158- 1166.
DOI |
DU Lin, YANG Feng, WEI Chao, et al. Parameter identification of the wide-band model of oil-impregnated paper insulation using frequency domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2018, 33 (5): 1158- 1166.
DOI |
|
20 |
刘小雨. 基于改进NSGA-Ⅱ算法的多目标联邦学习[J]. 计算机与数字工程, 2022, 50 (12): 2694- 2699.
DOI |
LIU Xiaoyu. Multi-objective federated learning based on improved NSGA-Ⅱ algorithm[J]. Computer & Digital Engineering, 2022, 50 (12): 2694- 2699.
DOI |
|
21 |
吴广宁, 宋臻杰, 辛东立. 基于扩展Debye模型仿真的回复电压特征量分析[J]. 高压电器, 2017, 53 (1): 8- 13.
DOI |
WU Guangning, SONG Zhenjie, XIN Dongli. Analysis of RVM characteristics based on the extended Debye model simulation[J]. High Voltage Apparatus, 2017, 53 (1): 8- 13.
DOI |
|
22 |
HAO J, LIAO R J, CHEN G, et al. Quantitative analysis ageing status of natural ester-paper insulation and mineral oil-paper insulation by polarization/depolarization current[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19 (1): 188- 199.
DOI |
23 |
张书琦, 李金忠, 汪可, 等. 温度特征参数提取及其对油纸绝缘频域谱的影响研究[J]. 绝缘材料, 2017, 50 (5): 49- 54, 62.
DOI |
ZHANG Shuqi, LI Jinzhong, WANG Ke, et al. Extraction of temperature characteristic parameter and its effect on frequency-domain dielectric spectroscopy of oil-paper insulation[J]. Insulating Materials, 2017, 50 (5): 49- 54, 62.
DOI |
|
24 |
LIAO R J, LIU J F, YANG L J, et al. Quantitative analysis of insulation condition of oil-paper insulation based on frequency domain spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22 (1): 322- 334.
DOI |
25 |
BARAL A, CHAKRAVORTI S. Assessment of non-uniform aging of solid dielectric using system poles of a modified Debye model for oil-paper insulation of transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20 (5): 1922- 1933.
DOI |
[1] | 任明, 李乾宇, 夏昌杰, 董明. 基于稀疏光谱成像的线路复合绝缘子积污状态可视化评估[J]. 中国电力, 2025, 58(2): 203-215. |
[2] | 夏向阳, 谭欣欣, 单周平, 李辉, 徐志强, 吴晋波, 岳家辉, 陈贵全. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57(11): 1-17. |
[3] | 黎冲, 王成辉, 王高, 鲁宗虎, 马成智. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86,95. |
[4] | 郭国栋, 龚雁峰, 吴迪, 潘建乔, 余方召, 潘白浪, 李欢. 引入HoloLens进行信息融合与数据挖掘的新型巡检方式及体验[J]. 中国电力, 2021, 54(7): 208-216. |
[5] | 杨国生, 戴飞扬, 王文焕, 郭鹏, 李妍霏. 基于灰度关联法和TOPSIS法的继电保护状态评估综合算法研究与应用[J]. 中国电力, 2019, 52(2): 94-103. |
[6] | 李志超, 李卫国, 夏喻, 张书琦, 汤浩, 贾鹏飞, 陈绍君. 基于模糊综合评判的变压器套管绝缘状态评估[J]. 中国电力, 2018, 51(4): 22-26,60. |
[7] | 赵洪山, 张健平, 李浪. 基于最优权重和隶属云的风电机组状态模糊综合评估[J]. 中国电力, 2017, 50(5): 88-94. |
[8] | 赵洪山, 张健平, 高夺, 李浪. 风机齿轮箱轴承状态评估与剩余寿命预测[J]. 中国电力, 2017, 50(4): 141-145. |
[9] | 白恺, 宋鹏, 刁嘉, 李智, 张扬帆, 杨伟新, 董超. 基于可靠性和发电性能的新能源发电设备状态评估方法[J]. 中国电力, 2016, 49(7): 140-144. |
[10] | 何志满,王剑飞. 变压器油中Cu2 S生成规律及影响[J]. 中国电力, 2016, 49(12): 31-36. |
[11] | 王奇,常安,宋云海,申文,刘亚东,盛戈皞. 基于组合赋权的变权模糊输电设备状态评估方法[J]. 中国电力, 2015, 48(5): 21-26. |
[12] | 沙彦超,周远翔,聂德鑫,邓建钢,刘泽洪,卢理成. 直流局部放电试验系统的研制及应用[J]. 中国电力, 2015, 48(4): 76-82. |
[13] | 钱海,王奇,陈翔宇,胡军. 考虑电网多元风险的输电断面动态增容调度分配方案[J]. 中国电力, 2015, 48(10): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||