[1] 赵传, 戴朝华, 付洋, 等. 考虑风电预测误差与系统安全域的风电装机规划多目标优化方法[J]. 太阳能学报, 2020, 41(2): 110–117 ZHAO Chuan, DAI Chaohua, FU Yang, et al. Multi-objective optimization of wind power planning considering wind power predictive encoding and system security domain[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 110–117 [2] 黄畅, 颜逸贤, 白尧, 等. 促进风电消纳的太阳能-燃煤热电联产系统性能研究[J]. 中国电力, 2022, 55(5): 182–188 HUANG Chang, YAN Yixian, BAI Yao, et al. Performance analysis of solar-coal cogeneration system for wind power consumption[J]. Electric Power, 2022, 55(5): 182–188 [3] 庞文涛, 盛德仁, 陈坚红, 等. 含风电系统的多机组协调运行滚动策略[J]. 太阳能学报, 2020, 41(11): 234–240 PANG Wentao, SHENG Deren, CHEN Jianhong, et al. Rolling strategy for multi unit coordinated operation with wind power system[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 234–240 [4] 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6): 186–193 XU Yanhui, XU Yijia. Capacity configuration and control strategy of hybrid energy storage to smooth wind power fluctuations[J]. Electric Power, 2022, 55(6): 186–193 [5] 王梓齐, 张书瑶, 刘长良. 基于增量式相对熵的风电机组实时状态监测[J]. 电子测量与仪器学报, 2020, 34(12): 125–132 WANG Ziqi, ZHANG Shuyao, LIU Changliang. Real-time condition monitoring of wind turbine based on incremental relative entropy[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(12): 125–132 [6] 苏剑涛, 郑书婷, 严干贵, 等. 基于改进FCM聚类算法的风电场等值建模研究[J]. 智慧电力, 2021, 49(10): 68–74 SU Jiantao, ZHENG Shuting, YAN Gangui, et al. Equivalent modeling of wind farm based on improved FCM clustering algorithm[J]. Smart Power, 2021, 49(10): 68–74 [7] 栗然, 霍启敬, 陈宇, 等. 基于非零和博弈的互联系统协同消纳风电调度法[J]. 电力系统自动化, 2018, 42(13): 94–100,126 LI Ran, HUO Qijing, CHEN Yu, et al. Non-zero-sum game based scheduling method for collaboratively accommodating wind power by interconnected power systems[J]. Automation of Electric Power Systems, 2018, 42(13): 94–100,126 [8] 杜凯育, 秦刚, 陈忠孝, 等. 直流配电网短期风电功率预测研究[J]. 国外电子测量技术, 2019, 38(11): 62–65 DU Kaiyu, QIN Gang, CHEN Zhongxiao, et al. Study on short-term wind power forecast of DC distribution network[J]. Foreign Electronic Measurement Technology, 2019, 38(11): 62–65 [9] 陈厚合, 王子璇, 张儒峰, 等. 含虚拟电厂的风电并网系统分布式优化调度建模[J]. 中国电机工程学报, 2019, 39(9): 2615–2625 CHEN Houhe, WANG Zixuan, ZHANG Rufeng, et al. Decentralized optimal dispatching modeling for wind power integrated power system with virtual power plant[J]. Proceedings of the CSEE, 2019, 39(9): 2615–2625 [10] 李茜, 刘天琪, 何川, 等. 含风电系统的有功和备用协调优化方法[J]. 电力自动化设备, 2016, 36(7): 7–14 LI Qian, LIU Tianqi, HE Chuan, et al. Coordinated optimization of active power and reserve capacity for power grid with wind farm[J]. Electric Power Automation Equipment, 2016, 36(7): 7–14 [11] 李茜, 刘天琪, 何川, 等. 风电动态接纳区间与备用的协调优化[J]. 四川大学学报(工程科学版), 2016, 48(2): 176–183 LI Qian, LIU Tianqi, HE Chuan, et al. Coordinated optimal of wind power dynamic acceptance interval and reserve[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(2): 176–183 [12] 苏承国, 申建建, 王沛霖, 等. 基于电源灵活性裕度的含风电电力系统多源协调调度方法[J]. 电力系统自动化, 2018, 42(17): 111–119 SU Chengguo, SHEN Jianjian, WANG Peilin, et al. Coordinated dispatching method for wind-turbine -integrated power system with multi-type power sources based on power flexibility margin[J]. Automation of Electric Power Systems, 2018, 42(17): 111–119 [13] DADKHAH A, VAHIDI B, SHAFIE-KHAH M, et al. Power system flexibility improvement with a focus on demand response and wind power variability[J]. IET Renewable Power Generation, 2020, 14(6): 1095–1103. [14] 张晓英, 张晓敏, 廖顺, 等. 基于聚类与非参数核密度估计的风电功率预测误差分析[J]. 太阳能学报, 2019, 40(12): 3594–3604 ZHANG Xiaoying, ZHANG Xiaomin, LIAO Shun, et al. Prediction error analysis of wind power based on clustering and non-parametric kernel density estimation[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3594–3604 [15] PILPOLA S, LUND P D. Different flexibility options for better system integration of wind power[J]. Energy Strategy Reviews, 2019, 26: 100368. [16] BERAHMANDPOUR H, KUHSARI S M, RASTEGAR H. Development the flexibility metric incorporating wind power in the presence of energy storage[C]//2019 International Power System Conference (PSC). Tehran, Iran. IEEE, 2019. [17] 伍双喜, 林英明, 杨银国, 等. 基于改进单亲遗传算法的大型海上风电场可靠性评估[J]. 电子测量技术, 2020, 43(4): 58–61 WU Shuangxi, LIN Yingming, YANG Yinguo, et al. Reliability evaluation of large offshore wind farm based on improved parthenogenetic algorithm algorithms[J]. Electronic Measurement Technology, 2020, 43(4): 58–61 [18] 赵福林, 俞啸玲, 杜诗嘉, 等. 计及需求响应的含大规模风电并网下电力系统灵活性评估[J]. 电力系统保护与控制, 2021, 49(1): 42–51 ZHAO Fulin, YU Xiaoling, DU Shijia, et al. Assessment on flexibility of a power grid with large-scale wind farm integration considering demand response[J]. Power System Protection and Control, 2021, 49(1): 42–51 [19] LIU X Y, FAN J C, CHEN Z W. Improved fuzzy C-means algorithm based on density peak[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 545–552. [20] 李茜, 毛雅铃, 王武双, 等. 基于动态机组分类的风电场优化调度[J]. 太阳能学报, 2021, 42(6): 419–424 LI Qian, MAO Yaling, WANG Wushuang, et al. Optimal scheduling of wind farms based on dynamic wind turbine clustering[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 419–424 [21] 张磊, 向紫藤, 余朋军, 等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力, 2021, 49(10): 75–82 ZHANG Lei, XIANG Ziteng, YU Pengjun, et al. Dynamic environmental economic dispatch of power system with wind farm based on green certificate transaction mechanisms[J]. Smart Power, 2021, 49(10): 75–82
|