[1] 刘振亚.全球能源互联网[M]. 北京: 中国电力出版社, 2015. [2] 全球能源互联网发展合作组织.全球能源互联网骨干网架研究[R]. 北京: 全球能源互联网发展合作组织, 2018. [3] 全球能源互联网发展合作组织. 大规模储能技术发展路线图[R]. 北京: 全球能源互联网发展合作组织, 2020. [4] 清华大学. 电力规划决策与评估系统技术手册[R]. 北京: 清华大学, 2019. [5] NGUYEN H N T, ZHANG C S, MAHMUD M A. Optimal coordination of G2V and V2G to support power grids with high penetration of renewable energy[J]. IEEE Transactions on Transportation Electrification, 2015, 1(2): 188–195. [6] 江涵,岳程燕,严兴煜,等. 高比例可再生能源系统惯量约束对灵活性分析的影响研究[J]. 电力系统保护与控制, 2021, 49(18): 44–51 JIANG Han, YUE Chengyan, YAN Xingyu, et al. Influence of system inertia on flexibility resource analysis for an interconnection system with a high proportion of intermittent renewable energy[J]. Power System Protection and Control, 2021, 49(18): 44–51 [7] DENHOLM P, HAND M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity[J]. Energy Policy, 2011, 39(3): 1817–1830. [8] MOGHADDAM I N, CHOWDHURY B H, MOHAJERYAMI S. Predictive operation and optimal sizing of battery energy storage with high wind energy penetration[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6686–6695. [9] SHIGENOBU R, NOORZAD A S, MUARAPAZ C, et al. Optimal operation and management for smart grid subsumed high penetration of renewable energy, electric vehicle, and battery energy storage system[J]. International Journal of Emerging Electric Power Systems, 2016, 17(2): 173–189. [10] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699–3705 BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699–3705 [11] 王耀华, 焦冰琦, 张富强, 等. 计及高比例可再生能源运行特性的中长期电力发展分析[J]. 电力系统自动化, 2017, 41(21): 9–16 WANG Yaohua, JIAO Bingqi, ZHANG Fuqiang, et al. Medium and long-term electric power development considering operating characteristics of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(21): 9–16 [12] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533–2543 ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533–2543 [13] YANG P, NEHORAI A. Joint optimization of hybrid energy storage and generation capacity with renewable energy[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1566–1574. [14] 李海波, 鲁宗相, 乔颖. 源荷储一体化的广义灵活电源双层统筹规划[J]. 电力系统自动化, 2017, 41(21): 46–54, 104 LI Haibo, LU Zongxiang, QIAO Ying. Bi-level optimal planning of generation-load-storage integrated generalized flexibility resource[J]. Automation of Electric Power Systems, 2017, 41(21): 46–54, 104 [15] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147–158 LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147–158 [16] 张宁, 代红才, 胡兆光, 等. 考虑系统灵活性约束与需求响应的源网荷协调规划模型[J]. 中国电力, 2019, 52(2): 61–69 ZHANG Ning, DAI Hongcai, HU Zhaoguang, et al. A source-grid-load coordinated planning model considering system flexibility constraints and demand response[J]. Electric Power, 2019, 52(2): 61–69 [17] 徐唐海, 鲁宗相, 乔颖, 等. 源荷储多类型灵活性资源协调的高比例可再生能源电源规划[J]. 全球能源互联网, 2019, 2(1): 27–34 XU Tanghai, LU Zongxiang, QIAO Ying, et al. High penetration of renewable energy power planning considering coordination of source-load-storage multi-type flexible resources[J]. Journal of Global Energy Interconnection, 2019, 2(1): 27–34 [18] 程耀华, 张宁, 王佳明, 等. 面向高比例可再生能源并网的输电网规划方案综合评价[J]. 电力系统自动化, 2019, 43(3): 33–42, 57 CHENG Yaohua, ZHANG Ning, WANG Jiaming, et al. Comprehensive evaluation of transmission network planning for integration of high-penetration renewable energy[J]. Automation of Electric Power Systems, 2019, 43(3): 33–42, 57 [19] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9): 3238–3245 YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9): 3238–3245 [20] 李佳明, 李文启, 鲁宗相, 等. 考虑系统灵活性的储能-输电线路扩展联合规划[J]. 中国电力, 2021, 54(4): 158–167 LI Jiaming, LI Wenqi, LU Zongxiang, et al. Joint expansion planning of energy storage and transmission considering power system flexibility[J]. Electric Power, 2021, 54(4): 158–167 [21] 王蓓蓓, 仇知, 丛小涵, 等. 基于两阶段随机优化建模的新能源电网灵活性资源边际成本构成的机理分析[J]. 中国电机工程学报, 2021, 41(4): 1348–1359, 1541 WANG Beibei, QIU Zhi, CONG Xiaohan, et al. Mechanism analysis of flexible resources' marginal price in new energy grid based on two-stage stochastic optimization modeling[J]. Proceedings of the CSEE, 2021, 41(4): 1348–1359, 1541 [22] 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国电机工程学报, 2017, 37(22): 6445–6462, 6757 BIE Zhaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy Internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445–6462, 6757 [23] 全球能源互联网发展合作组织.东北亚能源互联网发展与展望[R].北京: 全球能源互联网发展合作组织, 2020. [24] 全球能源互联网发展合作组织.全球能源互联网发展与展望[R].北京: 全球能源互联网发展合作组织, 2020. [25] 全球能源互联网发展合作组织.清洁能源发电技术发展与展望[R].北京: 全球能源互联网发展合作组织, 2020.
|