[1] 赵宇明, 麻敏华, 关志成, 等. 导线污秽对高压直流输电线路电晕特性的影响[J]. 高电压技术, 2007, 33(12): 49-54 ZHAO Yuming, MA Minhua, GUAN Zhicheng, et al. Influence of contaminations of the conductor on HVDC transmission line corona characteristics[J]. High Voltage Engineering, 2007, 33(12): 49-54 [2] 刘振亚. 中国特高压交流输电技术创新[J]. 电网技术, 2013, 37(3): 567-574 LIU Zhenya. Innovation of UHVAC transmission technology in China[J]. Power System Technology, 2013, 37(3): 567-574 [3] 李文鹏, 孟辉, 丁仁杰, 等. 110kV输电线路鸟粪闪络试验及防鸟罩结构优化[J]. 南方电网技术, 2019, 13(9): 37-42 LI Wenpeng, MENG Hui, DING Renjie, et al. Bird droppings flashover experiment of 110kV transmission line and structure optimization of the bird-proof cover[J]. Southern Power System Technology, 2019, 13(9): 37-42 [4] 刘益军, 王岩, 任亚英, 等. 佛山地区典型变电站和输电线路电磁环境监测分析[J]. 中国电力, 2012, 45(3): 18-22 LIU Yijun, WANG Yan, REN Yaying, et al. Electromagnetic environment monitoring of typical transmission substation and transmission in Foshan area[J]. Electric Power, 2012, 45(3): 18-22 [5] LI X B, CUI X, LU T B, et al. Experimental investigation on correlation of corona-induced vibration and audible noise from DC conductor[J]. High Voltage, 2016, 1(3): 115-121. [6] 林玥廷, 张维奇, 林英明, 等. 考虑燃煤机组健康度与负荷转移的连锁故障供防控策略[J]. 电力系统保护与控制, 2019, 47(17): 101-108 LIN Yueting, ZHANG Weiqi, LIN Yingming, et al. Control strategy of cascading failures considering the health degree of coal-fired units and load transfer[J]. Power System Protection and Control, 2019, 47(17): 101-108 [7] BIAN X M, ZHU J Y, YANG W, et al. The role of low air pressure in the variation of negative coro-na-generated space charge in a rod to plane electrode[J]. High Voltage, 2018, 3(2): 126-132. [8] HUANG R J, ZHANG Y, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. [9] PETÄJÄ T, JÄRVI L, KERMINEN V M, et al. Enhanced air pollution via aerosol-boundary layer feedback in China[J]. Scientific Reports, 2016, 6: 18998. [10] 霍沫霖, 赵佳, 徐朝, 等. 中国散烧煤消费地图及影响因素研究[J]. 中国电力, 2018, 51(1): 139-146 HUO Molin, ZHAO Jia, XU Zhao, et al. China scattered coal consumption map and influence factors[J]. Electric Power, 2018, 51(1): 139-146 [11] 胡霁, 董彦武, 陈怡, 等. 大气环境参数与电网污秽等级划分间经验算式的修正[J]. 高电压技术, 2012, 38(3): 632-638 HU Ji, DONG Yanwu, CHEN Yi, et al. Revise of empirical formula of atmosphere environment parameter and dividing grid pollution level[J]. High Voltage Engineering, 2012, 38(3): 632-638 [12] 李恒真, 叶晓君, 刘刚, 等. 广州地区输电线路沿线绝缘子自然污秽化学成分的来源分析[J]. 高电压技术, 2011, 37(8): 1937-1943 LI Hengzhen, YE Xiaojun, LIU Gang, et al. Source analysis on the chemical composition of natural contamination on the line insulator in Guangzhou area[J]. High Voltage Engineering, 2011, 37(8): 1937-1943 [13] 赵新泽, 赵美云. 架空输电导线的磨损特性及其影响行为研究[M]. 北京: 中国电力出版社, 2014: 135-156. [14] 刘云鹏, 李玥翰, 刘海峰, 等. 风沙条件下导线电晕特性的模拟试验系统设计[J]. 高电压技术, 2012, 38(9): 2417-2423 LIU Yunpeng, LI Yuehan, LIU Haifeng, et al. Design of simulation test system for corona characteristics of conductor under sandstorm condition[J]. High Voltage Engineering, 2012, 38(9): 2417-2423 [15] BIAN X M, YU D M, CHEN L, et al. Influence of aged conductor surface conditions on AC corona discharge with a corona cage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 809-818. [16] BIAN X, WANG Y, WANG L, et al. The effect of surface roughness on corona-generated electromagnetic interference for long-term operating conductors[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(2): 879-887. [17] BIAN X M, CHEN L, YU D M, et al. Impact of surface roughness on corona discharge for 30-year operating conductors in 500 kV ac power transmission line[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1693-1695. [18] BIAN X, CHEN L, YU D M, et al. Surface roughness effects on the corona discharge intensity of long-term operating conductors[J]. Applied Physics Letters, 2012, 101(17): 174103. [19] SUDA T, HIRAYAMA Y, SUNAGA Y. Aging effects of conductor surface conditions on DC corona characteristics[J]. IEEE Transactions on Power Delivery, 1988, 3(4): 1903-1912. [20] MOMBELLO E E, RATTÁ G, SUÁREZ H D, et al. Corona loss characteristics of contaminated conductors in fair weather[J]. Electric Power Systems Research, 2001, 59(1): 21-29. [21] 陈澜, 王黎明, 卞星明. 老化输电导线电晕特性及其对电磁环境的影响[J]. 高电压技术, 2014, 40(9): 2734-2742 CHEN Lan, WANG Liming, BIAN Xingming. Aged transmission lines conductor's corona char-acteristic and impact on electromagnetic environment[J]. High Voltage Engineering, 2014, 40(9): 2734-2742 [22] YI Y, ZHANG C, WANG L, et al. Conductor surface conditions effects on the ion-flow field of long-term operating conductors of the HVDC transmission line[J]. IEEE Transactions on Power Delivery, 2016, 32(5): 2171-2178. [23] 安帅, 淡淑恒, 蔡立川. 环境中金属颗粒对输电线路电晕的影响[J]. 中国电力, 2014, 47(8): 79-82 AN Shuai, DAN Shuheng, CAI Lichuan. Effect of metal particles in the environment on the transmission line's corona[J]. Electric Power, 2014, 47(8): 79-82 [24] XU J Y, XU P, ZHANG Q, et al. The role of varied metal protrusions on the conductor surfaces in corona discharge subjected to DC high voltages[J]. Science China Technological Sciences, 2018, 61(8): 1197-1206. [25] TALAAT M, El-ZEIN A, AMIN M. Electric field simulation for uniform and FGM cone type spacer with adhering spherical conducting particle in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 339-351. [26] 王东来, 卢铁兵, 林耀煜, 等. 高压直流导线表面粗糙度与电晕放电时粗糙系数的关系[J]. 高压电器, 2019, 55(6): 192-197 WANG Donglai, LU Tiebing, LIN Yaoyu, et al. Relationship between the HVDC conductor surface roughness and the roughness coefficient of corona discharge[J]. High Voltage Apparatus, 2019, 55(6): 192-197 [27] 张志猛, 贾伯岩, 刘杰, 等. 导线表面缺陷下的电场强度仿真及测试[J]. 科学技术与工程, 2019, 19(15): 163-169 ZHANG Zhimeng, JIA Boyan, LIU Jie, et al. Electric field simulation and testing on surface defect of the wire[J]. Science Technology and Engineering, 2019, 19(15): 163-169 [28] WANG H, XUE J Y, CHEN J H, et al. Effects of metal particle material on surface flashover performance of alumina-filled epoxy resin spacers in SF6/N2 mixtures under DC voltage[J]. AIP Advances, 2019, 9(8): 085212. |