[1] CHEN Z, BLAABJERG F. Wind farm—a power source in future power systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6): 1288–1300. [2] PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development:present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29(7): 780–792. [3] 李国栋, 李庚银, 严宇, 等. 新能源跨省区消纳交易方式研究与应用分析[J]. 中国电力, 2017, 50(4): 39–44 LI Guodong, LI Gengyin, YAN Yu, et al. Research and applications of trans-province trading modes of renewable energy[J]. Electric Power, 2017, 50(4): 39–44 [4] 赵成勇, 胡冬良, 李广凯, 等. 多端VSC-HVDC 用于风电场联网时的控制策略[J]. 电网技术, 2009, 33(17): 135–140 ZHAO Chengyong, HU Dongliang, LI Guangkai, et al. Control strategy for interconnection of wind farms by multi-terminal VSC-HVDC[J]. Power System Technology, 2009, 33(17): 135–140 [5] 张晋芳, 郑宽, 黄瀚, 等. 特高压直流主送新能源技术经济研究[J]. 中国电力, 2017, 50(6): 152–157 ZHANG Jinfang, ZHENG Kuan, HUANG Han, et al. The technical and economic analysis on new energy mainly transmitted by UHV DC channels[J]. Electric Power, 2017, 50(6): 152–157 [6] XU L, YAO L, SASSE C. Grid integration of large DFIG-based wind farms using VSC transmission[J]. IEEE Transactions on Power Systems, 2007, 22(3): 976–984. [7] 赵静, 赵成勇, 孙一莹, 等. 模块化多电平直流输电联网风电场时的低电压穿越技术[J]. 电网技术, 2013, 37(3): 726–732 ZHAO Jing, ZHAO Chengyong, SUN Yiying, et al. Low voltage ride-through technology for wind farms connected to power grid via MMC-based HVDC transmission[J]. Power System Technology, 2013, 37(3): 726–732 [8] 陈缨, 郭小敏, 黄宇, 等. 基于动态概率潮流的输电网断线风险评估[J]. 中国电力, 2019, 52(5): 155–163 CHEN Ying, GUO Xiaomin, HUANG Yu, et al. Risk assessment of transmission network breakage based on dynamic probabilistic power flow[J]. Electric Power, 2019, 52(5): 155–163 [9] FENG W, TUAN L, TJERNBERG L B. A new approach for benefit evaluation of multiterminal VSC-HVDC using a proposed mixed AC/DC optimal power flow[J]. IEEE Transactions on Power Systems, 2014, 29(1): 432–443. [10] 卫志农, 季聪, 郑玉平, 等. 计及VSC-HVDC的交直流系统最优潮流统一混合算法[J]. 中国电机工程学报, 2014, 34(4): 635–643 WEI Zhinong, JI Cong, ZHENG Yuping, et al. Optimal power flow of AC/DC systems with VSC-HVDC based on a novel unified hybrid algorithm[J]. Proceedings of the CSEE, 2014, 34(4): 635–643 [11] 李逸驰, 孙国强, 杨义, 等. 含经VSC-HVDC 并网海上风电场的交直流系统概率最优潮流[J]. 电力自动化设备, 2015, 35(9): 136–142 LI Yichi, SUN Guoqiang, YANG Yi, et al. Probabilistic optimal power flow of AC/DC system with offshore wind farm connected to grid via VSC-HVDC[J]. Electric Power Automation Equipment, 2015, 35(9): 136–142 [12] LI Y, LI W, YAN W, et al. Probabilistic optimal power flow considering correlations of wind speeds following different distributions[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1847–1854. [13] ZOU B, XIAO Q. Solving probabilistic optimal power flow problem using quasi Monte Carlo method and ninth-order polynomial normal transformation[J]. IEEE Transactions on Power Systems, 2014, 29(1): 300–306. [14] 易驰韡, 胡泽春, 宋永华. 考虑注入功率分布的随机最优潮流方法[J]. 电网技术, 2013, 37(2): 367–371 YI Chiwei, HU Zechun, SONG Yonghua. A stochastic optimal power flow method considering power injection distributions[J]. Power System Technology, 2013, 37(2): 367–371 [15] 方斯顿, 程浩忠, 徐国栋, 等. 随机最优潮流及其应用的研究综述[J]. 电力自动化设备, 2016, 36(11): 1–10 FANG Sidun, CHENG Haozhong, XU Guodong, et al. Reviews on stochastic optimal power flow and its application[J]. Electric Power Automation Equipment, 2016, 36(11): 1–10 [16] KIMBALL L M, CLEMENTS K A, DAVIS P W. Stochastic OPF via Bender's method[C]//IEEE Porto Power Tech Proceedings, Porto, Portugal. 2001. [17] 严干贵, 王茂春, 穆钢, 等. 双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J]. 电工技术学报, 2008, 23(7): 98–104 YAN Gangui, WANG Maochun, MU Gang, et al. Modeling of grid-connected doubly-fed induction generator for reactive power static regulation capacity study[J]. Transactions of China Electrotechnical Society, 2008, 23(7): 98–104 [18] 郑超, 周孝信, 李若梅, 等. VSC-HVDC 稳态特性与潮流算法的研究[J]. 中国电机工程学报, 2005, 25(6): 1–5 ZHENG Chao, ZHOU Xiao-xin, LI Ruo-mei, et al. Study on the steady characteristics and algorithm of power flow for VSC-HVDC[J]. Proceedings of the CSEE, 2005, 25(6): 1–5 [19] 李程昊, 詹鹏, 文劲宇, 等. 适用于大规模风电并网的多端柔性直流输电系统控制策略[J]. 电力系统自动化, 2015, 39(11): 1–7 LI Chenghao, ZHAN Peng, WEN Jinyu, et al. A multiterminal VSC-HVDC system control strategy for large wind farms integration[J]. Automation of Electric Power Systems, 2015, 39(11): 1–7 [20] 田园园, 廖清芬, 刘涤尘, 等. 基于VSC-HVDC的风电分散并网下垂控制策略[J]. 电力系统自动化, 2016, 40(3): 103–109 TIAN Yuanyuan, LIAO Qingfen, LIU Dichen, et al. Droop control strategy for wind power decentralized integration based on VSC-HVDC system[J]. Automation of Electric Power Systems, 2016, 40(3): 103–109 [21] DAELEMANS G.VSC HVDC in Meshed networks[D].Leuven, Belgium: Katholieke Universiteit Leuven, 2008. [22] PINSON P, MADSEN H, NIELSEN H A, et al. From probabilistic forecasts to statistical scenarios of short-term wind power production[J]. Wind Energy, 2009, 12(1): 51–62. [23] ZHANG N, KANG C, XU Q, et al. Modelling and simulating the spatio-temporal correlations of clustered wind power using copula[J]. Journal of Electrical Engineering & Technology, 2013, 8(6): 1615–1625. [24] HOCHREITER R, PFLUG G C. Financial scenario generation for stochastic multi-stage decision processes as facility location problems[J]. Annals of Operations Research, 2007, 152(1): 257–272. [25] DUPACOVA J, GROWE-KUSKA N, ROMISCH W. Scenario reduction in stochastic programming:an approach using probability metrics[J]. Mathematical Programming, 2003, 95(2): 493–511. [26] 卫志农, 季聪, 孙国强, 等. 含VSC-HVDC的交直流系统内点法最优潮流计算[J]. 中国电机工程学报, 2012, 32(19): 89–95 WEI Zhinong, JI Cong, SUN Guoqiang, et al. Interior-point optimal power flow of AC-DC system with VSC-HVDC[J]. Proceedings of the CSEE, 2012, 32(19): 89–95 [27] 武文, 吴学智, 荆龙, 等. 适用于多端直流输电系统的模块化多端口直流潮流控制器[J]. 电工技术学报, 2019, 34(3): 539–551 WU Wen, WU Xuezhi, JING Long, et al. A modular multi-port DC power flow controller for multi-terminal DC transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 539–551 [28] 李生虎, 吴正阳, 黄杰杰, 等. 考虑非对称运行和受端分层接入的特高压直流潮流建模[J]. 电力系统自动化, 2017, 41(22): 40–47 LI Shenghu, WU Zhengyang, HUANG Jiejie, et al. Power flow modeling for ultra-high voltage direct current considering unbalanced operation and receiving-end hierarchical integration[J]. Automation of Electric Power Systems, 2017, 41(22): 40–47
|