[1] 宋晓喆, 魏国, 李雪, 等. 基于预处理BICGSTAB法的电力系统潮流并行计算方法[J]. 电力系统保护与控制, 2020, 48(20): 18-28 SONG Xiaozhe, WEI Guo, LI Xue, et al. Parallel power flow computing in power grids based on a preconditioned BICGSTAB method[J]. Power System Protection and Control, 2020, 48(20): 18-28 [2] AL-MUHAWESH T A, QAMBER I S. The established mega watt linear programming-based optimal power flow model applied to the real power 56-bus system in eastern Province of Saudi Arabia[J]. Energy, 2008, 33(1): 12-21. [3] BURCHETT R C, HAPP H H, VIERATH D R. Quadratically convergent optimal power flow[J]. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(11): 3267-3275. [4] 刘明波, 段晓军, 赵艳. 多目标最优潮流问题的模糊建模及内点解法[J]. 电力系统自动化, 1999, 23(14): 37-40, 50 LIU Mingbo, DUAN Xiaojun, ZHAO Yan. Fuzzy modeling and interior point algorithm of multi-objective opf problem[J]. Automation of Electric Power Systems, 1999, 23(14): 37-40, 50 [5] 王子琪, 陈金富, 张国芳, 等. 基于飞蛾扑火优化算法的电力系统最优潮流计算[J]. 电网技术, 2017, 41(11): 3641-3647 WANG Ziqi, CHEN Jinfu, ZHANG Guofang, et al. Optimal power flow calculation with moth-flame optimization algorithm[J]. Power System Technology, 2017, 41(11): 3641-3647 [6] 陈功贵, 邱思远, 郭艳艳, 等. 改进布谷鸟搜索算法在电力系统优化潮流中的应用[J]. 电力系统及其自动化学报, 2017, 29(10): 30-34 CHEN Gonggui, QIU Siyuan, GUO Yanyan, et al. Application of improved cuckoo search algorithm to optimal power flow in power system[J]. Proceedings of the CSU-EPSA, 2017, 29(10): 30-34 [7] 张东寅, 王澎涛, 袁艳斌, 等. 基于改进布谷鸟算法的电力系统最优潮流计算[J]. 水电能源科学, 2017, 35(1): 200-204 ZHANG Dongyin, WANG Pengtao, YUAN Yanbin, et al. An improved cuckoo search algorithm for optimal power flow problem[J]. Water Resources and Power, 2017, 35(1): 200-204 [8] 栗然, 张凡, 靳保源, 等. 基于改进蚁狮算法的电力系统最优潮流计算[J]. 电力科学与工程, 2017, 33(9): 15-22 LI Ran, ZHANG Fan, JIN Baoyuan, et al. Optimal power flow using modified ant lion optimizer[J]. Electric Power Science and Engineering, 2017, 33(9): 15-22 [9] 李静文, 赵晋泉, 张勇. 基于改进差分进化-生物地理学优化算法的最优潮流问题[J]. 电网技术, 2012, 36(9): 115-119 LI Jingwen, ZHAO Jinquan, ZHANG Yong. Optimal power flow on basis of combining improved differential evolution algorithm with biogeography-based optimization algorithm[J]. Power System Technology, 2012, 36(9): 115-119 [10] 赵树本, 张伏生. 基于改进差分进化算法的电力系统最优潮流计算[J]. 电网技术, 2010, 34(8): 123-128 ZHAO Shuben, ZHANG Fusheng. Solution of optimal power flow based on differential evolution and its modified algorithm[J]. Power System Technology, 2010, 34(8): 123-128 [11] 袁蒙, 燕翚. 基于人工蜂群算法的电力系统最优潮流[J]. 智能电网, 2015, 3(2): 103-106 YUAN Meng, YAN Hui. An optimal power flow algorithm in power system based on artificial bee colony algorithm[J]. Smart Grid, 2015, 3(2): 103-106 [12] MENG A B, CHEN Y C, YIN H, et al. Crisscross optimization algorithm and its application[J]. Knowledge-Based Systems, 2014, 67: 218-229. [13] 孟安波, 梅鹏, 卢海明. 基于纵横交叉算法的热电联产经济调度[J]. 电力系统保护与控制, 2016, 44(6): 90-97 MENG Anbo, MEI Peng, LU Haiming. Crisscross optimization algorithm for combined heat and power economic dispatch[J]. Power System Protection and Control, 2016, 44(6): 90-97 [14] 殷豪, 李德强, 孟安波, 等. 纵横交叉算法在配电网故障定位中的应用[J]. 电力系统保护与控制, 2016, 44(21): 109-114 YIN Hao, LI Deqiang, MENG Anbo, et al. Fault location for distribution network based on crisscross optimization algorithm[J]. Power System Protection and Control, 2016, 44(21): 109-114 [15] MENG A B, HU H W, YIN H, et al. Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects[J]. Energy, 2015, 93: 2175-2190. [16] MENG A B, LI J B, YIN H. An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects[J]. Energy, 2016, 113: 1147-1161. [17] ALSAC O, STOTT B. Optimal load flow with steady-state security[J]. IEEE Transactions on Power Apparatus and Systems, 1974, PAS-93(3): 745-751. [18] ATTIA A F, EL SEHIEMY R A, HASANIEN H M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 331-343. [19] MOHAMED A A A, MOHAMED Y S, EL-GAAFARY A A M, et al. Optimal power flow using moth swarm algorithm[J]. Electric Power Systems Research, 2017, 142: 190-206. [20] RADOSAVLJEVIĆ J, KLIMENTA D, JEVTIĆ M, et al. Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm[J]. Electric Power Components and Systems, 2015, 43(17): 1958-1970. [21] BAI W L, EKE I, LEE K Y. An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem[J]. Control Engineering Practice, 2017, 61: 163-172. [22] NGUYEN T T. A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization[J]. Energy, 2019, 171: 218-240.
|