[1] FELIX J D, ELLIOTT E M, SHAW S L. Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories[J]. Environmental Science & Technology, 2012, 46(6): 3528-3535.
[2] REIS S, PINDER R W, ZHANG M, et al. Reactive nitrogen in atmospheric emission inventories[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(3): 7657-7677.
[3] 国家发展和改革委员会, 环境保护部, 国家能源局.煤电节能减排升级与改造行动计划(2014-2020年)[A].2014.
[4] 环境保护部, 国家发展和改革委员会, 国家能源局.关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知(环发
[2015] 164号)[A].2015.
[5] WANG Yibin, TAN Houzhang, DONG Kun, et al. Study of ash fouling on the blade of induced fan in a 330 MW coal-fired power plant with ultra-low pollutant emission[J]. Applied Thermal Engineering, 2017, 118: 283-291.
[6] 赵大周, 郑文广, 何胜, 等. 660 MW机组SCR系统喷氨格栅堵塞的原因分析及优化[J]. 电站系统工程, 2016, 32(2): 77-79.
ZHAO Dazhou, ZHENG Wenguang, HE Sheng, et al. Analysis and optimization of cause of ammonia injection grid blockage in 660 MW power unit SCR system[J]. Power System Engineering, 2016, 32(2): 77-79.
[7] 陈崇明, 侯海萍, 邹斯诣, 等. 某电厂SCR烟气脱硝系统故障诊断[J]. 中国电力, 2016, 49(5): 63-66.
CHEN Chongming, HOU Haiping, ZOU Siyi, et al. Fault diagnosis of the SCR system in a power plant[J]. Electric Power, 2016, 49(5): 63-66.
[8] 吕太, 赵学葵, 王潜. 燃煤机组SCR脱硝系统氨氮混合优化[J]. 热力发电. 2016, 45(7): 13-20.
LU Tai, ZHAO Xuekui, WANG Qian. NH3-NOx mixture optimization for SCR denitrification system in a coal-fired unit[J]. Thermal Power Generation, 2016, 45(7): 13-20.
[9] BAO Jingjing, MAO Lin, ZHANG Yuhua, et al. Effect of selective catalytic reduction system on fine particle emission characteristics[J].Energy & Fuel, 2016, 30: 1325-1334.
[10] CHEN Heng, PAN Peiyuan, SHAO Huaishuang, et al. Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 113: 373-385.
[11] 王建峰, 饶望平, 李壮, 等. NOx低浓度排放影响因素的调平措施及效果分析[J]. 中国电力, 2016, 49(4): 23-26.
WANG Jianfeng, RAO Wangping, LI Zhuang, et al. The Measures to regulate the influencing factors of low NOx emission and their effectiveness analysis[J]. Electric Power, 2016, 49(4): 23-26.
[12] 李清毅, 孟炜, 吴国潮, 等. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
LI Qingyi, MENG Wei, WU Guochao, et al. Evaluation on operation state and stability for denitrification of ultra low emission[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(12): 2303-2311.
[13] 方朝君, 金理鹏, 宋玉宝, 等. SCR脱硝系统喷氨优化及最大脱硝效率试验研究[J]. 热力发电, 2014, 43(7): 157-160.
FANG Zhaojun, JIN Lipeng, SONG Yubao, et al. Performance optimization and maximum denitration efficiency analysis for SCR-DeNOx power plants[J]. Thermal Power Generation, 2014, 43(7): 157-160.
[14] 姚燕, 王丽朋, 孔凡海, 等. SCR脱硝系统蜂窝式催化剂性能评估及寿命管理[J]. 热力发电, 2016, 45(11): 114-119.
YAO Yan, WANG Lipeng, KONG Fanhai, et al. Performance evaluation and lifetime management of honeycomb SCR catalysts in coal-fired power plant[J]. Thermal Power Generation, 2016, 45(11): 114-119.
[15] BACHMANN T M, KAMP J van der. Environmental cost-benefit analysis and the EU (European Union) industrial emissions directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant [J]. Energy, 2014, 68: 125-139.
[16] MA Zizhen, DENG Jianguo, LI Zhen, et al. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies[J]. Atmospheric Environment, 2016, 131:164-170.
[17] 晏敏, 赵凯, 朱跃. 燃煤电厂运行中脱硝催化剂的性能检测评价与分析[J].中国电力, 2016, 49(7): 168-172.
YAN Min, ZHAO Kai, ZHU Yue. Performance assessment and analysis of denitration catalyst in coal-fired power plant [J].Electric Power, 2016, 49(7): 168-172. |