[1] 火电厂大气污染物控制排放标准: GB/T13223—2011[S].Emission standard of air pollutants for thermal power plants: GB/T13223—2011[S].
[2] 李兴华, 赵彩虹, 牛拥军, 等. 燃煤火电机组无烟气旁路脱硫系统运行及改造方案研究[J]. 中国电力, 2014, 47(10): 134-136.LI Xinghua, ZHAO Caihong, NIU Yongjun, et al. Study on operation optimization and retrofit of non-bypass FGD system of fossil fuel power plants[J]. Electric Power, 2014, 47(10): 134-136.
[3] 王运军, 王宏伟, 魏继平, 等. 600MW超临界发电机组污染物脱除及排放[J]. 中国电力, 2013, 46(12): 113-117.WANG Yunjun, WANG Hongwei, WEI Jiping, et al. Removal and emission of pollutants from 600MW supercritical units[J]. Electric Power, 2013, 46(12): 113-117.
[4] 许月阳, 薛建明, 管一明, 等. 燃煤电厂应对新标准二氧化硫控制对策研究[J]. 中国电力, 2012, 45(4): 73-77.XU Yueyang, XUE Jianming, GUAN Yiming, et al. Control strategy for sulfur dioxide under new standard in coal-fired power plant[J]. Electric Power, 2012, 45(4): 73-77.
[5] 张军梅. 提高电站湿法脱硫系统效率及可靠性的几点措施[J]. 中国电力, 2013, 46(5): 13: 17.ZHANG Junmei. Several measures of improving the efficiency and reliability of FGD system in power plant[J]. Electric Power, 2013, 46(5): 13: 17.
[6] 发改能源【2014】2093号: 关于印发《煤电节能减排升级与改造行动计划(2014-2020)》的通知[S].
[7] 帅伟, 李立, 崔志敏, 等. 基于实测的超低排放燃煤电厂主要大气污染物排放与减排效益分析[J]. 中国电力, 2015, 48(11): 131-137.SHUAI Wei, LI Li, CUI Zhimin, et al. Analysis of primary air pollutant emission characteristics and reduction efficiency for ultra-low emission coal-fired power plants based on actual measurement[J]. Electric Power, 2015, 48(11): 131-137.
[8] 孟炜, 李清毅, 胡达清, 等. 百万千瓦燃煤机组烟气超低排放设计及应用[J]. 热能动力工程, 2016, 31(1): 111-116.Meng Wei, LI Qingyi, HU Daqing, et al. Design and applications of the ultra low emissions of flue gases from a 1000 MW coal-fired boiler unit[J]. Engineering for Thermal Energy & Power, 2016, 31(1): 111-116.
[9] 姚明宇, 聂剑平, 张立欣, 等. 燃煤电站锅炉烟气污染物一体化协同治理技术[J]. 热力发电, 2016, 45(3): 8-12.YAO Mingyu, NIE Jianping, ZHANG Lixin, et al. Integrative flue-gas pollutants removal technology for coal-fired utility boilers[J]. Thermal Power Generation, 2016, 45(3): 8-12.
[10] 史文峥, 杨萌萌, 张绪辉, 等. 燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报, 2016, 36(16): 4308-4318.SHI Wenzheng, YANG Mengmeng, ZHANG Xuhui, et al. Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE, 2016, 36(16): 4308-4318.
[11] 李兴华, 何育东. 燃煤火电机组SO2超低排放改造方案研究[J]. 中国电力, 2015, 48(10): 148-151.LI Xinghua, HE Yudong. Study on modification of ultra-low SO2 emission in coal-fired power plants[J]. Electric Power, 2015, 48(10): 148-151.
[12] 赵磊, 周洪光. 超低排放燃煤火电机组湿式电除尘器细颗粒物脱除分析[J]. 中国电机工程学报, 2016, 36(2): 468-473.ZHAO Lei, ZHOU Hongguang. Particle removal efficiency analysis of WESP in an ultra low emission coal-fired power plant[J]. Proceedings of the CSEE, 2016, 36(2): 468-473.
[13] 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-50.MO Hua, ZHU Jie, HUANG Zhijie, et al. Test and study on SO3 removal performance of different wet flue gas desulfurization technologies at ultra low pollutants emission[J]. Electric Power, 2017, 50(3): 46-50.
[14] 张军, 郑成航, 张涌新, 等. 某1000 MW燃煤机组超低排放电厂烟气污染物排放测试及其特性分析[J]. 中国电机工程学报, 2016, 36(5): 1310-1314.ZHANG Jun, ZHENG Chenghang, ZHANG Yongxin, et al. Experimental investigation of ultra-low pollutants emission characteristics from a 1000 MW coal-fired power plant[J]. Proceedings of the CSEE, 2016, 36(5): 1310-1314.
[15] 朱法华. 燃煤电厂烟气污染物超低排放技术路线的选择[J]. 中国电力, 2017, 50(3): 11-16.ZHU Fahua. Methodologies on choosing appropriate technical route for ultra low emission of flue gas pollutants from caol-fired power plants[J]. Electric Power, 2017, 50(3): 11-16.
[16] 林朝扶, 兰建辉, 梁国柱, 等. 串联吸收塔脱硫技术在燃超高硫煤火电厂的应用[J]. 广西电力, 2013, 36(5): 11-15.LIN Chaofu, LAN Jianhui, LIANG Guozhu, et al. Application of flue gas desulphurization technology of series- connected absorption tower in the supper high sulfur coal-fired power plant[J]. Guangxi Electric Power, 2013, 36(5): 11-15.
[17] 李元, 杨志忠. 湿法烟气脱硫关键影响因素及新型单塔双循环技术[J]. 环境工程, 2016(1): 69-73.LI Yuan, YANG Zhizhong. Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulations per tower technology[J]. Environmental Engineering, 2016(1): 69-73.
[18] 李娜. 石灰石-石膏法单塔双循环烟气脱硫工艺介绍[J]. 硫酸工业, 2014(6): 45-48.LI Na. Technology of flue gas desulphurization utilizing single desulphurization tower and double cycling of desulphurizing solution by limestone-gypsum method[J]. Sulphuric Acid Industry, 2014(6): 45-48.
[19] 魏宏鸽, 徐明华, 柴磊, 等. 双塔双循环脱硫系统的运行现状分析与优化措施探讨[J]. 中国电力, 2016, 49(10): 132-135.WEI Hongge, XU Minghua, CHAI Lei, et al. Current operation state analysis and optimization method exploration on double-tower double-cycle wet-FGD systems[J]. Electric Power, 2016, 49(10): 132-135.
[20] 李晓金, 梁培婷, 刘纯杰, 等. 双循环石灰石-石膏湿法脱硫技术反应机理分析[J]. 环境工程, 2017, (35增刊): 414-417, 517.LI Xiaojin, LIANG Peiting, LIU Chunjie, et al. Analysis on reaction mechanism of double loop process for wet flue gas desulphurization with limestone[J]. Environmental Engineering, 2017, (35supplement issue): 414-417, 517.
[21] 周勇. 双塔串联石灰石-石膏湿法脱硫的研究与应用[D]. 济南: 山东大学, 2014.ZHOU Yong. Study on limestone-plasterboard wet desulphurization based on two series[D].Jinan: Shandong University, 2014.
[22] 王仁雷, 蔡传钰, 张杨, 等. 不同浆液循环泵运行方式下串联吸收塔脱硫效果评价及优化[J]. 电站系统工程, 2016, 32(2): 19-21.WANG Renlei, CAI Chuanyu, ZHANG Yang, et al. Study and optimization of operation methods of slurry circulating pump based on desulfurization effect of FGD with series absorption tower[J]. Power System Engineering, 2016, 32(2): 19-21. |