中国电力 ›› 2015, Vol. 48 ›› Issue (7): 82-88.DOI: 10.11930.2015.7.82

• 电力规划 • 上一篇    下一篇

季节划分下产业用电量关联分析及预测

马瑞1,彭舟1,蒋诗谣1,徐慧明2,王熙亮3   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114;2. 国网信息通信有限公司,北京 100761;
    3. 国网经济技术研究院 北京 102209
  • 收稿日期:2015-04-10 出版日期:2015-07-25 发布日期:2015-11-26
  • 作者简介:马瑞(1971—),男,甘肃秦安人,博士,教授,从事电力系统分析与控制、新能源及其利用、电力市场等方面的研究。E-mail: marui818@126.com
  • 基金资助:
    国家自然科学基金资助项目(51277015);国家电网公司科技资助项目([2012]515)

Correlation Analysis and Forecast on Industrial Electricity Demands Based on Seasonal Divisions

MA Rui1, PENG Zhou1, JIANG Shiyao1, XU Huiming2, WANG Xiliang3   

  1. 1. Hunan Key Laboratory of Smart Grids Operation and Control Changsha University of Science and Technology,Changsha 410114, China;
    2. State Grid Information & Telecommunication Branch, Beijing 100761, China;3. State Power Economic Research Institute, Beijing 102209, China
  • Received:2015-04-10 Online:2015-07-25 Published:2015-11-26
  • Supported by:
    This work is supported by Natural Science of China (No. 51277015); Science and Technology Projects of State Grid ([2012]515).

摘要: 产业用电需求预测对于实现精细化用电管理、降低电力企业运行与规划成本具有十分重要的意义。鉴于常见的预测方法在产业结构划分下的中短期用电量预测中效果不佳,分析了不同季节下产业用电量之间内在关联关系以及气温对其的外在影响,结合计量经济学思想,分季节构建了用于电量预测的误差修正模型,并利用该模型对华中某省网月度用电量进行了预测分析,结果表明,该模型具有较高的预测精度。

关键词: 电力, 产业电量, 关联分析, 用电量预测, 误差修正模型, 用电管理

Abstract: The forecasting of industrial electricity demand has a vital significance for realizing the refined power consumption management and reducing the cost of electric power enterprises operation and planning. However, the conventional forecasting methods, which forecast the electricity demands in the medium-term under the division of industrial structure, can’t provide satisfied results. In this paper, the correlative relationship between industrial electricity demands and forecasting methods is analyzed according to different seasons, and the external influence of temperature is discussed. In addition, on the basis of the aforementioned analysis and the econometrics theory, an error correction model is established in seasonal divisions for forecasting electricity demand. Finally, the monthly electricity demands of one province in the central China is forecasted and analyzed by using the correction model, and the results proves the feasibility of the method and shows the promised accuracy.

Key words: electric power, industrial electricity demand, correlation analysis, electricity demand forecasting, error correction model, power consumption management

中图分类号: