中国电力 ›› 2025, Vol. 58 ›› Issue (12): 211-222.DOI: 10.11930/j.issn.1004-9649.202504060
• 新能源与储能 • 上一篇
葛彦硕1(
), 周艳真1(
), 郭庆来1(
), 肖大军2, 徐遐龄2, 李鑫2, 刘涛2
收稿日期:2025-04-23
修回日期:2025-09-16
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
GE Yanshuo1(
), ZHOU Yanzhen1(
), GUO Qinglai1(
), XIAO Dajun2, XU Xialing2, LI Xin2, LIU Tao2
Received:2025-04-23
Revised:2025-09-16
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
日前光伏出力预测在实际应用中精度有待提升,且存在新建光伏电站数据缺乏难以预测的问题。为此,充分利用大语言模型(large language model,LLM)的推理优势和序列各维相关性信息,提出一种气象协变量注意力增强Time-LLM模型用于日前光伏出力预测。首先,通过填充和拼接构建融合气象协变量信息和光伏出力历史信息的模型输入序列。然后,通过所提协变量注意力模块融合气象协变量序列与光伏出力序列之间的相关性信息。最后,通过Time-LLM架构实现时间序列与文本序列的模态对齐,有效利用LLM的文本分析能力进行光伏出力时间序列的准确预测。在光伏出力公开数据集上进行算例分析,结果表明:所提模型不仅在测试集上预测准确率最高,还具有最低的零样本预测误差。所提方法既提高了日前光伏出力预测任务的准确率,也为解决新建光伏电站因历史数据匮乏而难以应用传统深度模型预测的问题提供了新思路。
葛彦硕, 周艳真, 郭庆来, 肖大军, 徐遐龄, 李鑫, 刘涛. 基于气象协变量注意力和大语言模型的日前光伏出力预测[J]. 中国电力, 2025, 58(12): 211-222.
GE Yanshuo, ZHOU Yanzhen, GUO Qinglai, XIAO Dajun, XU Xialing, LI Xin, LIU Tao. Day-Ahead Photovoltaic Power Forecasting Based on Large Language Model with Meteorological Covariate Attention[J]. Electric Power, 2025, 58(12): 211-222.
| 超参数名称 | Informer | iTransformer | PatchTST | CNN- LSTM | Bi- LSTM | TFT | ||||||
| d_model | 512 | 512 | 256 | 128 | ||||||||
| d_ff | 2048 | 2048 | ||||||||||
| hidden_size | 32 | 16 | ||||||||||
| n_layers | 1 | 1 | 2 | 3 | 1 | 2 | ||||||
| learning_rate | 3×10–5 | 1×10–4 | 1×10–4 | 3×10–5 | 1×10–3 | 1×10–5 |
表 1 不同基线模型的最优超参数组合
Table 1 Optimal hyperparameter configuration of different baseline models
| 超参数名称 | Informer | iTransformer | PatchTST | CNN- LSTM | Bi- LSTM | TFT | ||||||
| d_model | 512 | 512 | 256 | 128 | ||||||||
| d_ff | 2048 | 2048 | ||||||||||
| hidden_size | 32 | 16 | ||||||||||
| n_layers | 1 | 1 | 2 | 3 | 1 | 2 | ||||||
| learning_rate | 3×10–5 | 1×10–4 | 1×10–4 | 3×10–5 | 1×10–3 | 1×10–5 |
| 模型 | EMA/MW | ERMS/MW | p | |||||
| Bi-LSTM | 36.98 | 80.15 | 94.00 | |||||
| CNN-LSTM | 31.70 | 75.03 | 94.40 | |||||
| Informer | 24.69 | 59.65 | 95.55 | |||||
| iTransformer | 29.13 | 61.99 | 95.37 | |||||
| PatchTST | 36.20 | 74.81 | 94.37 | |||||
| TFT | 29.10 | 71.56 | 94.68 | |||||
| Time-LLM | 43.60 | 83.41 | 93.74 | |||||
| 改进Time-LLM | 22.72 | 56.33 | 95.84 |
表 2 模型整体预测误差及准确率分析
Table 2 Analysis of the overall prediction error and accuracy of different models
| 模型 | EMA/MW | ERMS/MW | p | |||||
| Bi-LSTM | 36.98 | 80.15 | 94.00 | |||||
| CNN-LSTM | 31.70 | 75.03 | 94.40 | |||||
| Informer | 24.69 | 59.65 | 95.55 | |||||
| iTransformer | 29.13 | 61.99 | 95.37 | |||||
| PatchTST | 36.20 | 74.81 | 94.37 | |||||
| TFT | 29.10 | 71.56 | 94.68 | |||||
| Time-LLM | 43.60 | 83.41 | 93.74 | |||||
| 改进Time-LLM | 22.72 | 56.33 | 95.84 |
| LS | 不同P下的ERMS | |||||||||
| 12 | 24 | 48 | 96 | 192 | ||||||
| 1/6P | 61.82 | 61.73 | 57.50 | 59.82 | 56.33 | |||||
| 1/4P | 59.77 | 57.24 | 57.41 | 59.02 | 61.82 | |||||
| 1/2P | 61.16 | 56.75 | 60.88 | 58.90 | 62.09 | |||||
| 1P | 56.85 | 58.88 | 61.87 | 58.02 | 59.62 | |||||
| 2P | 61.51 | 63.47 | 58.67 | 58.57 | 67.33 | |||||
表 3 改进Time-LLM在不同窗口长度和滑动距离下的RMSE测试结果
Table 3 ERMS of improved Time-LLM with different patch length and stride length on test set 单位:MW
| LS | 不同P下的ERMS | |||||||||
| 12 | 24 | 48 | 96 | 192 | ||||||
| 1/6P | 61.82 | 61.73 | 57.50 | 59.82 | 56.33 | |||||
| 1/4P | 59.77 | 57.24 | 57.41 | 59.02 | 61.82 | |||||
| 1/2P | 61.16 | 56.75 | 60.88 | 58.90 | 62.09 | |||||
| 1P | 56.85 | 58.88 | 61.87 | 58.02 | 59.62 | |||||
| 2P | 61.51 | 63.47 | 58.67 | 58.57 | 67.33 | |||||
| 模型 | EMA/MW | ERMS/MW | p | |||||||
| Bi-LSTM | 31.64 | 68.23 | 93.84 | 2.76 | ||||||
| CNN-LSTM | 28.07 | 67.01 | 93.97 | 7.62 | ||||||
| Informer | 21.72 | 51.67 | 95.38 | 3.80 | ||||||
| iTransformer | 25.77 | 55.17 | 95.04 | 7.12 | ||||||
| PatchTST | 32.12 | 67.21 | 93.90 | 8.39 | ||||||
| TFT | 24.79 | 60.79 | 94.55 | 2.45 | ||||||
| Time-LLM | 38.30 | 73.92 | 93.30 | 7.06 | ||||||
| 改进Time-LLM | 19.33 | 47.59 | 95.77 | 1.80 |
表 4 零样本预测任务中模型整体预测误差及准确率分析
Table 4 Overall prediction error and accuracy of different models in zero-shot tasks
| 模型 | EMA/MW | ERMS/MW | p | |||||||
| Bi-LSTM | 31.64 | 68.23 | 93.84 | 2.76 | ||||||
| CNN-LSTM | 28.07 | 67.01 | 93.97 | 7.62 | ||||||
| Informer | 21.72 | 51.67 | 95.38 | 3.80 | ||||||
| iTransformer | 25.77 | 55.17 | 95.04 | 7.12 | ||||||
| PatchTST | 32.12 | 67.21 | 93.90 | 8.39 | ||||||
| TFT | 24.79 | 60.79 | 94.55 | 2.45 | ||||||
| Time-LLM | 38.30 | 73.92 | 93.30 | 7.06 | ||||||
| 改进Time-LLM | 19.33 | 47.59 | 95.77 | 1.80 |
| 1 |
SUN H B, GUO Q L, SHEN X W, et al. Energy Internet: redefinition and categories[J]. Energy Internet, 2024, 1 (1): 3- 8.
DOI |
| 2 |
FAN S X, GUO J B, MA S C, et al. Enabling artificial intelligence-based scenario application in new type power systems[J]. Energy Internet, 2024, 1 (1): 9- 13.
DOI |
| 3 |
刘大贵, 王维庆, 张慧娥, 等. 基于隐马尔科夫修正的光伏中长期电量预测及调度计划应用[J]. 高电压技术, 2023, 49 (2): 840- 848.
DOI |
|
LIU Dagui, WANG Weiqing, ZHANG Huie, et al. Mid-long term available quantity of electricity forecasting with error calibration by hidden Markov model in photovoltaic and application of dispatching plan[J]. High Voltage Engineering, 2023, 49 (2): 840- 848.
DOI |
|
| 4 | 解振学, 林帆, 王若谷, 等. 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力, 2022, 50 (7): 45- 51. |
| XIE Zhenxue, LIN Fan, WANG Ruogu, et al. Very short-term photovoltaic power forecasting method based on time series dynamic regression[J]. Smart Power, 2022, 50 (7): 45- 51. | |
| 5 |
彭曙蓉, 陈慧霞, 孙万通, 等. 基于改进LSTM的光伏发电功率预测方法研究[J]. 太阳能学报, 2024, 45 (11): 296- 302.
DOI |
|
PENG Shurong, CHEN Huixia, SUN Wantong, et al. Research on photovoitaic power prediction method based on improved LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45 (11): 296- 302.
DOI |
|
| 6 |
李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55 (11): 149- 154.
DOI |
|
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-Net[J]. Electric Power, 2022, 55 (11): 149- 154.
DOI |
|
| 7 |
龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48 (7): 2948- 2957.
DOI |
|
LONG Xiaohui, QIN Jiyun, ZHANG Qinglei, et al. Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power System Technology, 2024, 48 (7): 2948- 2957.
DOI |
|
| 8 |
何威, 苏中元, 史金林, 等. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45 (3): 480- 487.
DOI |
|
HE Wei, SU Zhongyuan, SHI Jinlin, et al. Photovoltaic power forecasting based on dual-attention-GRU and similarity modification[J]. Acta Energiae Solaris Sinica, 2024, 45 (3): 480- 487.
DOI |
|
| 9 | 姜建国, 杨效岩, 毕洪波. 基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 太阳能学报, 2024, 45 (7): 462- 473. |
| JIANG Jianguo, YANG Xiaoyan, BI Hongbo. Photovoltaic power forecasting method based on VMD-FE-CNN-BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45 (7): 462- 473. | |
| 10 |
冯裕祺, 李辉, 李利娟, 等. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55 (7): 163- 171.
DOI |
|
FENG Yuqi, LI Hui, LI Lijuan, et al. Voltage trajectory prediction of photovoltaic power station based on CNN-GRU[J]. Electric Power, 2022, 55 (7): 163- 171.
DOI |
|
| 11 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30. |
| 12 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 11106- 11115.
DOI |
| 13 | NIE Y Q, NGUYEN N H. , SINTHONG P, et al. A time series is worth 64 words: Long-term forecasting with transformers[C]//The Eleventh International Conference on Learning Representations. 2022. |
| 14 | ZHANG Y H, YAN J C. Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//International Conference on Learning Representations, 2023. |
| 15 | LIU Y, WU H X, WANG J M, et al. Non-stationary transformers: exploring the stationarity in time series forecasting[J]. Advances in Neural Information Processing Systems, 2022, 35, 9881- 9893. |
| 16 | ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning, 2022 : 27268–27286. |
| 17 | 梁睿, 金沫含, 朱慧君, 等. 基于多场景聚类和可解释时间融合Transformer网络的乡村地区净负荷区间预测[J/OL]. 电网技术, 1–13 [2025-03-28]. https://kns.cnki.net/kcms/detail/11.2410.TM.20250327.1802.012.html. |
| LIANG Rui, JIN Mohan, ZHU Huijun, et al. Net load interval forecasting in rural areas based on multi-scenario clustering and explainable temporal fusion transformers network[J/OL]. Power System Technology, 1–13 [2025-03-28]. https://kns.cnki.net/kcms/detail/11.2410.TM.20250327.1802.012.html. | |
| 18 | 张倩, 蒙飞, 李涛, 等. 基于周期信息增强的Informer光伏发电功率预测[J]. 中国电力, 2023, 56 (10): 186- 193. |
| ZHANG Qian, MENG Fei, LI Tao, et al. Informer photovoltaic power generation forecasting based on cycle information enhancement[J]. Electric Power, 2023, 56 (10): 186- 193. | |
| 19 |
邓芳明, 刘涛, 王锦波, 等. 基于地基云图与气象因素多模态融合的光伏功率预测方法[J]. 中国电机工程学报, 2025, 45 (18): 7193- 7206.
DOI |
|
DENG Fangming, LIU Tao, WANG Jinbo, et al. Research on photovoltaic power prediction based on multimodal fusion of ground cloud map and meteorological factors[J]. Proceedings of the CSEE, 2025, 45 (18): 7193- 7206.
DOI |
|
| 20 | LIU Y, HU T G, ZHANG H R, et al. iTransformer: Inverted transformers are effective for time series forecasting[C]//The Twelfth International Conference on Learning Representations. |
| 21 | LIANG Y X, WEN H M, NIE Y Q, et al. Foundation models for time series analysis: a tutorial and survey[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona Spain. ACM, 2024: 6555–6565. |
| 22 |
XUE H, SALIM F D. PromptCast: a new prompt-based learning paradigm for time series forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (11): 6851- 6864.
DOI |
| 23 | WANG X L, FENG M K, QIU J, et al. From news to forecast: integrating event analysis in LLM-based time series forecasting with reflection[J]. Advances in Neural Information Processing Systems, 2024, 37, 58118- 58153. |
| 24 |
TANG H, ZHANG C, JIN M Y, et al. Time series forecasting with LLMs: understanding and enhancing model capabilities[J]. ACM SIGKDD Explorations Newsletter, 2025, 26 (2): 109- 118.
DOI |
| 25 | ZHENG L N, DONG C, ZHANG W E, et al. Understanding why large language models can be ineffective in time series analysis: the impact of modality alignment[C]//Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2. Toronto ON, Canada. ACM, 2025: 4026–4037. |
| 26 | JIN M, WANG S Y, MA L T, et al. Time-LLM: Time series forecasting by reprogramming large language models[C]//The Twelfth International Conference on Learning Representations. |
| 27 | ELIA. Photovoltaic power production estimation and forecast on Belgian grid (Historical)[EB/OL]. (2025-02-15)[2025-05-27]. https://opendata.elia.be/explore/dataset/ods032/information. |
| 28 | OPEN-METEO. Weather forecast API[EB/OL]. (2025-02-15)[2025-05-27]. https://open-meteo.com/en/docs. |
| 29 | 刘洋, 于海东, 刘文彬, 等. 基于DTW-两阶四分位的分布式光伏发电异常数据辨识[J]. 热力发电, 2024, 53(7): 34–44. |
| LIU Yang, YU Haidong, LIU Wenbin, et al. Abnormal data identification for distributed photovoltaic generation based on DTW and two-stage quartile[J]. Thermal Power Generation, 2024, 53(7): 163–171. | |
| 30 | DIEBOLD F X, MARIANO R S. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 2002, 20 (1): 134- 144. |
| 31 |
LIM B, ARIK S Ö, LOEFF N, et al. Temporal fusion transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37 (4): 1748- 1764.
DOI |
| [1] | 张金营, 王哲峰, 谢华, 么长英, 闵艳丽, 王新颖. 基于知识图谱与大语言模型的电力行业知识检索分析系统研发与应用[J]. 中国电力, 2024, 57(12): 198-205. |
| [2] | 刘昳娟, 陈云龙, 刘继彦, 张雪梅, 吴潇雨, 孔维政. 基于集成学习的分布式光伏发电功率日前预测[J]. 中国电力, 2022, 55(9): 38-45. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编