中国电力 ›› 2024, Vol. 57 ›› Issue (12): 198-205.DOI: 10.11930/j.issn.1004-9649.202409084

• 信息与通信 • 上一篇    下一篇

基于知识图谱与大语言模型的电力行业知识检索分析系统研发与应用

张金营1(), 王哲峰1(), 谢华2(), 么长英2(), 闵艳丽3(), 王新颖4   

  1. 1. 国电电力发展股份有限公司,辽宁 鞍山 100101
    2. 国能信控互联技术有限公司,北京 100080
    3. 同方知网数字出版技术股份有限公司,北京 100192
    4. 华北电力大学 电气与电子工程学院,北京 102206
  • 收稿日期:2024-09-23 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:张金营(1984—),男,高级工程师,博士,从事人工智能、分散控制系统研究,E-mail:jinying.zhang@chnenergy.com.cn
    王哲峰(1977—),男,高级工程师,从事电力系统及其自动化研究,E-mail:zhefeng.wang.a@chnenergy.com.cn
    谢华(1980—),男,高级工程师,研究生,从事电厂信息化研究,E-mail:13426067303@163.com
    么长英(1985—),女,高级工程师,从事人工智能、机器学习、数据治理、电厂信息化和数字化转型研究,E-mail:yaochangying@126.com
    闵艳丽(1982—),女,工程师,从事人工智能、数据治理、企业数字化转型研究,E-mail:myl4546@cnki.net
  • 基金资助:
    国家自然科学基金资助项目(62373151)。

Development and Application of a Knowledge Retrieval and Analysis System for the Power Industry Based on Knowledge Graph and Large Language Model

Jinying ZHANG1(), Zhefeng WANG1(), Hua XIE2(), Changying YAO2(), Yanli MIN3(), XINYing WANG4   

  1. 1. Guodian Electric Power Development Co., Ltd., Anshan 100101, China
    2. Guoneng Information Control Interconnection Technology Co., Ltd., Beijing 100080, China
    3. Tongfang Knowledge Network Digital Publishing Technology Co., Ltd., Beijing 100192, China
    4. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2024-09-23 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.62373151).

摘要:

随着人工智能技术飞速发展,电力行业知识检索系统面临着技术的更新迭代。提出了一种基于知识图谱与大语言模型的电力行业知识检索分析系统。首先,借助大语言模型挖掘用户需求并理解用户的意图;然后,针对不同结构的知识信息,通过知识建模、知识抽取、知识融合等策略来构建结构化的知识图谱;最后,利用大语言模型根据用户请求和从知识子图中获取的专业知识,并将生成内容可视化展示给用户,为电力行业知识检索系统提供了新思路。

关键词: 大语言模型, 知识图谱, 知识抽取

Abstract:

With the rapid development of artificial intelligence technology, knowledge retrieval systems in the power industry are facing technological updates and iterations. A knowledge retrieval and analysis system for the power industry based on knowledge graph and big language model has been proposed. Firstly, using big language models to mine user needs and understand their intentions; Then, for knowledge information with different structures, structured knowledge graphs are constructed through strategies such as knowledge modeling, knowledge extraction, and knowledge fusion; Finally, utilizing a large language model based on user requests and professional knowledge obtained from knowledge subgraphs, and visualizing the generated content for display to users, provides a new approach for knowledge retrieval systems in the power industry.

Key words: large language model, knowledge graph, knowledge extraction