中国电力 ›› 2022, Vol. 55 ›› Issue (10): 23-31.DOI: 10.11930/j.issn.1004-9649.202206114

• 多元负荷用能感知及友好互动 • 上一篇    下一篇

基于知识图谱与细胞自动机模型的配电网信息系统风险分析

梅冰笑, 周金辉, 孙翔   

  1. 国网浙江省电力有限公司电力科学研究院,浙江 杭州 310007
  • 收稿日期:2022-06-27 修回日期:2022-08-25 出版日期:2022-10-28 发布日期:2022-10-20
  • 作者简介:梅冰笑(1978—),男,硕士,高级工程师,从事电力系统设备管理与安全技术研究,E-mail:48733021@qq.com;周金辉(1983—),男,通信作者,博士,高级工程师(教授级),从事智能配电网技术研究与工程应用,E-mail:38892714@qq.com
  • 基金资助:
    国家自然科学基金资助项目(输变电设备表征缺陷的视频图像检测平台研制,62127803)。

Analysis of Distribution Network Information Risks Based on Knowledge Graph and Cellular Automata

MEI Bingxiao, ZHOU Jinhui, SUN Xiang   

  1. State Grid Zhejiang Electric Power Company Research Institute, Hangzhou 310007, China
  • Received:2022-06-27 Revised:2022-08-25 Online:2022-10-28 Published:2022-10-20
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Development of Video Image Detection Platform for Characterizing Defection of Power Transmission and Transformation Equipment, No.62127803).

摘要: 为了刻画配电网中信息系统的风险传播过程,保障电力系统安全可靠运行,利用知识图谱与细胞自动机技术相结合的方法实现对配电网信息系统的风险分析。首先利用知识图谱方法对配电网采集的多源异构信息开展风险知识提取和融合,实现对信息系统风险的静态分析。其次,构建配电网风险分析的细胞自动机模型,设计细胞在正常状态与故障状态之间的转变机制,实现对配电网信息风险发展过程的动态分析。最后结合仿真实验,验证了所提方法能够实现对配电网信息风险跨空间传播过程的有效刻画。

关键词: 知识图谱, 配电网, 信息系统, 风险分析, 细胞自动机

Abstract: In order to describe the propagation process of the information system risks in distribution networks and ensure the safe and reliable operation of power systems, the knowledge graph and cellular automata technology are used to analyze the distribution network information system risks. Firstly, the knowledge graph method is used to extract and fuse the risk knowledge of the multi-source heterogeneous information collected from distribution networks, so as to realize static analysis of the information risks. Secondly, a cellular automata model is built for risk analysis of the distribution networks, and the transition mechanism between the normal state and the fault state of the cell is designed to realize dynamic analysis of the evolution process of the distribution network information risks. Finally, based on simulation experiments, it is verified that the proposed method can effectively describe the cross-spatial propagation process of the distribution network information risks.

Key words: knowledge graph, distribution network, information system, risk analysis, cellular automata