中国电力 ›› 2025, Vol. 58 ›› Issue (12): 211-222.DOI: 10.11930/j.issn.1004-9649.202504060

• 新能源与储能 • 上一篇    

基于气象协变量注意力和大语言模型的日前光伏出力预测

葛彦硕1(), 周艳真1(), 郭庆来1(), 肖大军2, 徐遐龄2, 李鑫2, 刘涛2   

  1. 1. 清华大学 电机工程与应用电子技术系,北京 100084
    2. 国家电网有限公司华中分部,湖北 武汉 430000
  • 收稿日期:2025-04-23 修回日期:2025-09-16 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    葛彦硕(2003),男,博士研究生,从事人工智能在电力系统时序数据预测与场景生成中的应用研究, E-mail:geys21@mails.tsinghua.edu.cn
    周艳真(1990),女,博士,从事电力系统分析与控制、人工智能在复杂电网调控中的应用研究,E-mail:zhouyanzhen@mail.tsinghua.edu.cn
    郭庆来(1979),男,通信作者,博士,教授,从事信息物理系统和无功电压优化控制研究,E-mail:guoqinglai@tsinghua.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(面向电网调度智能辅助的大模型关键技术研究,5108-202455044A-1-1-ZN)。

Day-Ahead Photovoltaic Power Forecasting Based on Large Language Model with Meteorological Covariate Attention

GE Yanshuo1(), ZHOU Yanzhen1(), GUO Qinglai1(), XIAO Dajun2, XU Xialing2, LI Xin2, LIU Tao2   

  1. 1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
    2. Central China Branch of State Grid Corporation of China, Wuhan 430000, China
  • Received:2025-04-23 Revised:2025-09-16 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Key Technologies of Large Language Models for Intelligent Assistance in Power Grid Dispatching, No.5108-202455044A-1-1-ZN).

摘要:

日前光伏出力预测在实际应用中精度有待提升,且存在新建光伏电站数据缺乏难以预测的问题。为此,充分利用大语言模型(large language model,LLM)的推理优势和序列各维相关性信息,提出一种气象协变量注意力增强Time-LLM模型用于日前光伏出力预测。首先,通过填充和拼接构建融合气象协变量信息和光伏出力历史信息的模型输入序列。然后,通过所提协变量注意力模块融合气象协变量序列与光伏出力序列之间的相关性信息。最后,通过Time-LLM架构实现时间序列与文本序列的模态对齐,有效利用LLM的文本分析能力进行光伏出力时间序列的准确预测。在光伏出力公开数据集上进行算例分析,结果表明:所提模型不仅在测试集上预测准确率最高,还具有最低的零样本预测误差。所提方法既提高了日前光伏出力预测任务的准确率,也为解决新建光伏电站因历史数据匮乏而难以应用传统深度模型预测的问题提供了新思路。

关键词: 光伏出力预测, 大语言模型, Time-LLM, 协变量注意力, 零样本

Abstract:

To improve the accuracy of day-ahead photovoltaic (PV) power forecasting and mitigate the challenge of data scarcity in newly built photovoltaic power stations, leveraging both the reasoning capabilities of large language models (LLMs) and the correlation information across various dimensions of sequences, this paper proposes a meteorological covariate attention-enhanced Time-LLM model for day-ahead PV power prediction. Firstly, the input sequence is constructed by padding and concatenating historical PV power series with meteorological covariate series. Then, a novel covariate attention module is introduced to capture the cross-dimensional dependencies between meteorological variables and PV power sequences. Finally, the Time-LLM architecture is employed to achieve modality alignment between time-series and text sequences, effectively leveraging the textual analysis capabilities of LLMs for accurate PV power forecasting. Experimental results on public PV datasets demonstrate that the proposed model achieves superior forecasting performance and exhibits remarkable zero-shot learning capability. The proposed method not only improves the accuracy of day-ahead photovoltaic power forecasting, but also provides a promising solution for newly built PV plants with limited historical data, where traditional deep learning models often fail due to data scarcity.

Key words: photovoltaic power forecasting, large language model, Time-LLM, covariate attention, zero-shot


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?