中国电力 ›› 2023, Vol. 56 ›› Issue (8): 216-229.DOI: 10.11930/j.issn.1004-9649.202302021
马超
收稿日期:
2023-02-06
修回日期:
2023-06-12
发布日期:
2023-08-28
作者简介:
马超(1995—),男,硕士,工程师,从事电力标准化发展战略及规划、电力标准数字化、新型电力系统、网络安全、用电信息安全、电力密码应用等研究,E-mail:2051143463@qq.com
基金资助:
MA Chao
Received:
2023-02-06
Revised:
2023-06-12
Published:
2023-08-28
Supported by:
摘要: 在电力数字化转型背景下,为充分发挥电力标准在数字化转型过程的基础性、引领性、战略性、规范性和保障性作用,从而促进电力标准化工作更加便捷、高效及智能,亟须开展电力标准数字化转型研究。目前关于电力标准数字化转型的发展需求、核心问题、技术路径及应用场景的研究尚未形成共识,仍处于探索阶段,研究面向机器可读标准的电力标准数字化具有重要意义。在此背景下,首先对标准数字化相关概念进行了综述,总结出当前中国标准数字化转型发展共性问题。其次,分别从电力同其他行业的差异性和电力行业自身特性角度,深入分析了开展电力标准数字化转型需思考的2个问题。然后,从总体思路、核心技术及典型案例3个维度,构建了电力标准数字化转型总体技术路径;同时,构建涵盖电力标准内容分析与展示、电力标准指标比对、电力无人机巡检标准数字化、电力供应链标准数字化等4个电力标准数字化业务场景。最后,提出了电力标准数字化转型发展建议,并对未来电力标准数字化转型发展进行了展望,以期对未来电力标准数字化转型发展路径提供决策参考。
马超. 面向机器可读标准的电力标准数字化述评与展望[J]. 中国电力, 2023, 56(8): 216-229.
MA Chao. Review and Prospect of Power Standard Digitization for Machine Readable Standards[J]. Electric Power, 2023, 56(8): 216-229.
[1] 新华社. 中共中央 国务院印发《国家标准化发展纲要》[J]. 中华人民共和国国务院公报, 2021(30): 35–41 XINHUA News Agency. The central committee of the CPC and the state council print and issue the outlines for the development of national standardization[J]. Gazette of the State Council of the People’s Republic of China, 2021(30): 35–41 [2] 《国家标准化发展纲要》[J]. 中国质量监管, 2021(10): 16–21. Outline of national standardization development[J]. China Quality Supervision, 2021(10): 16–21. [3] 田世宏. 开启新时代标准化发展的新征程[J]. 中国质量监管, 2021(10): 14–15 TIAN Shihong. Open a new journey of standardization development in the new era[J]. China Quality Supervision, 2021(10): 14–15 [4] 张佩玉, 裴继超. 邬贺铨: 标准数字化是大势所趋[J]. 中国标准化, 2022(7): 24–29 [5] 于欣丽. 对我国标准数字化工作的几点思考[J]. 中国标准化, 2022(5): 7–13 [6] 刘曦泽, 王益谊, 杜晓燕, 等. 标准数字化发展现状及趋势研究[J]. 中国工程科学, 2021, 23(6): 147–154 LIU Xize, WANG Yiyi, DU Xiaoyan, et al. Development status and trend of standards digitization[J]. Strategic Study of CAE, 2021, 23(6): 147–154 [7] 马超, 邓桃, 周勤勇, 等. 面向电力领域的标准数字化转型工作研究: 需求分析、转型路径与应用场景[J]. 中国标准化, 2022(23): 87–92 MA Chao, DENG Tao, ZHOU Qinyong, et al. Research on standards digital transformation for electric power field: demand analysis, transformation path and application scenario[J]. China Standardization, 2022(23): 87–92 [8] 马超, 宋琛. 电力标准数字化: 概念、核心挑战、治理路线图及发展趋势[J/OL]. 电网技术: 1–20[2023-06-08]. https: //doi. org/10.13335/j. 1000-3673. pst. 2022.2539. MA Chao, SONG Chen. Digital transformation of standards in electric power field: concept, core challenges, governance roadmap and development trend[J/OL]. Power System Technology: 1–20[2023-06-08]. https://doi.org/10.13335/j.1000-3673.pst.2022.2539. [9] 汪烁, 卢铁林, 尚羽佳. 机器可读标准: 标准数字化转型的核心[J]. 标准科学, 2021(增刊1): 6–16 WANG Shuo, LU Tielin, SHANG Yujia. Machine readable standard-the core of standardization digital transformation[J]. Standard Science, 2021(S1): 6–16 [10] 李翔宇, 傅田, 潘鑫, 等. 标准数字化在航空行业应用探索与实践[J]. 信息技术与标准化, 2022(10): 68–72, 78 LI Xiangyu, FU Tian, PAN Xin, et al. Exploration and practice of standards digitalization in aviation industry[J]. Information Technology & Standardization, 2022(10): 68–72, 78 [11] 杨跃翔, 涂新雨, 刘文玲. 标准文献知识图谱构建与应用研究[J]. 数字图书馆论坛, 2022(6): 22–30 YANG Yuexiang, TU Xinyu, LIU Wenling. Research on the construction and application of standard documents knowledge graph[J]. Digital Library Forum, 2022(6): 22–30 [12] 连泽涛, 蔡毅, 任浩鹏. 标准知识图谱构建与推荐算法[J]. 信息技术与标准化, 2022(10): 47–50 LIAN Zetao, CAI Yi, REN Haopeng. Standard knowledge graph construction and recommendation algorithms[J]. Information Technology & Standardization, 2022(10): 47–50 [13] 白殿一. 从标准化原理视角看标准数字化[J]. 中国标准化, 2022(22): 11–13 [14] 张雪飞, 韩冰, 苏宏宇, 等. 标准比对知识图谱研究[J]. 中国标准化, 2022(17): 56–61, 75 ZHANG Xuefei, HAN Bing, SU Hongyu, et al. Visualized analysis of standards comparative research by knowledge graph[J]. China Standardization, 2022(17): 56–61, 75 [15] ISO. ISO strategy 2030 (the 3rd edition) [R]. Geneva: ISO Central Secretariat, 2021. [16] IEC. IEC发展规划(2017年)[R]. 北京: 中国电器工业协会, 2017. IEC. IEC development plan (2017) [R]. Beijing: China Electrical Industry Association, 2017. [17] 王春喜, 汪烁. 工业自动化领域机器可读标准研究[J]. 中国标准化, 2021(增刊1): 27–31 WANG CHUNXI, WANG Shuo. Research on machine readable standards in the field of industrial automation[J]. China Standardization, 2021(S1): 27–31 [18] 陈心怡, 张华, 贾君君, 等. 数字经济下工业生产标准数字化转型探索研究[J]. 中国标准化, 2023(1): 48–52 CHEN Xinyi, ZHANG Hua, JIA Junjun, et al. Study on digital transformation of industrial production standards in digital economy[J]. China Standardization, 2023(1): 48–52 [19] 刘曦泽, 牛娜娜, 王益谊. SMART标准用例分析与启示[J]. 标准科学, 2022(12): 63–67 LIU Xize, NIU Nana, WANG Yiyi. Use case analysis and inspiration of smart standard[J]. Standard Science, 2022(12): 63–67 [20] DUAN Y, EWARDS J S, DWIVEDI Y K. Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda[J]. International Journal of Information Management, 2019, 48: 63–71. [21] DOSILOVIC F K, BRCIC M, HLUPIC N. Explainable artificial intelligence: a survey[C]//2018 41 st International convention on information and communication technology, electronics and microelectronics (MIPRO). IEEE, 2018: 0210–0215. [22] DWIVEDI Y K, HUGHES L, ISMAGILOVA E, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy[J]. International Journal of Information Management, 2021, 57: 101994. [23] KOLMYKOV E A, VORONTSOVA Y V, VORONTSOVA A N. How to go to smart (machine-readable) standards[J]. Izvestia Volgograd State Technical University, 2022(1): 17–20. [24] ROBERTS H, COWLS J, MORLEY J, et al. The Chinese approach to artificial intelligence: an analysis of policy, ethics, and regulation[J]. Ethics, Governance, and Policies in Artificial Intelligence, 2021: 47–79. [25] CATH C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2018, 376(2133): 20180080. [26] WANG R C, ZHANG Y Z, MAO J Y, et al. Translating a Visual LEGO manual to a machine-executable plan[M]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 677–694. [27] QUAN LIU Y. Best practices, standards and techniques for digitizing library materials: a snapshot of library digitization practices in the USA[J]. Online Information Review, 2004, 28(5): 338–345. [28] LOPATIN L. Library digitization projects, issues and guidelines: a survey of the literature[J]. Library Hi Tech, 2006, 24(2): 273–289. [29] COYLE K. Mass digitization of books[J]. The Journal of Academic Librarianship, 2006, 32(6): 641–645. [30] BORSCH T, STEVENS A D, HAFFNER E, et al. A complete digitization of German herbaria is possible, sensible and should be started now[J]. Research Ideas and Outcomes, 2020, 6: e50675. [31] SUTTMEIER R P, YAO X, TAN A Z. Standards of power? Technology, institutions, and politics in the development of China’s national standards strategy[J]. Geopolitics, History, and International Relations, 2009, 1(1): 46–84. [32] XU G Y, DONG H Y, XU Z C, et al. China can reach carbon neutrality before 2050 by improving economic development quality[J]. Energy, 2022, 243: 123087. [33] JANSSEN M, BROUS P, ESTEVEZ E, et al. Data governance: organizing data for trustworthy artificial intelligence[J]. Government Information Quarterly, 2020, 37(3): 101493. [34] Al-BADI A, TARHINI A, KHAN A I. Exploring big data governance frameworks[J]. Procedia computer science, 2018, 141: 271–277. [35] URINOVICH KOBILOV A, KHASHIMOVA D P, MANNANOVA S G, et al. Modern content and concept of digital economy[J]. International Journal of Multicultural and Multireligious Understanding, 2022, 9(2): 375. [36] ALI AL-QUDAH A, AL-OKAILY M, ALQUDAH H. The relationship between social entrepreneurship and sustainable development from economic growth perspective: 15 ‘RCEP’ countries[J]. Journal of Sustainable Finance & Investment, 2022, 12(1): 44–61. [37] KIRIKKALELI D, GÜNGÖR H, ADEBAYO T S. Consumption-based carbon emissions, renewable energy consumption, financial development and economic growth in Chile[J]. Business Strategy and the Environment, 2022, 31(3): 1123–1137. [38] LI J L, CHEN L T, CHEN Y, et al. Digital economy, technological innovation, and green economic efficiency—empirical evidence from 277 cities in China[J]. Managerial and Decision Economics, 2022, 43(3): 616–629. [39] PAN W R, XIE T, WANG Z W, et al. Digital economy: an innovation driver for total factor productivity[J]. Journal of Business Research, 2022, 139: 303–311. [40] CARRIER J G. A handbook of economic anthropology[M]. 3 rd edition. Northampton: Edward Elgar Publishing, 2022. [41] WANG Q, WANG S S. Carbon emission and economic output of China’s marine fishery - a decoupling efforts analysis[J]. Marine Policy, 2022, 135: 104831. [42] RAMESH S. The theories of cognitive development[M]//The Political Economy of Human Behaviour and Economic Development. Cham: Springer International Publishing, 2022: 143–180. [43] KHAN L, RAO Y. A performance evaluation of storing XML data in relational database management systems[C]//Proceedings of the 3 rd international workshop on Web information and data management. 2001: 31–38. [44] ZHAO X, MAHENDRU M, MA X W, et al. Impacts of environmental regulations on green economic growth in China: new guidelines regarding renewable energy and energy efficiency[J]. Renewable Energy, 2022, 187: 728–742. [45] WILLIAMS R G. The political economy[M]//The Oxford Handbook of Central American History. Oxford: Oxford University Press, 2020: 253-284. [46] BALLAND P A, BROEKEL T, DIODATO D, et al. The new paradigm of economic complexity[J]. Research Policy, 2022, 51(3): 104450. [47] SCHNEIDER B R, DONER R F. The new institutional economics, business associations, and development[J]. Brazilian Journal of Political Economy, 2000, 20(3): 229–252. [48] MAMATZHONOVICH O D, KHAMIDOVICH O M, ESONALI OGLI M Y. Digital economy: essence, features and stages of development[J]. Academicia Globe: Inderscience Research, 2022, 3(4): 355–359. [49] MUGHAL N, ARIF A, JAIN V, et al. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: evidence from South Asian economies[J]. Energy Strategy Reviews, 2022, 39: 100745. [50] KHAN I, HOU F J, ZAKARI A, et al. Links among energy intensity, non-linear financial development, and environmental sustainability: new evidence from Asia Pacific Economic Cooperation countries[J]. Journal of Cleaner Production, 2022, 330: 129747. [51] MA Q, TARIQ M, MAHMOOD H, et al. The nexus between digital economy and carbon dioxide emissions in China: the moderating role of investments in research and development[J]. Technology in Society, 2022, 68: 101910. [52] 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735–2745 BIE Zhaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735–2745 [53] 丁涛, 牟晨璐, 别朝红, 等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报, 2018, 38(15): 4318–4328, 4632 DING Tao, MU Chenlu, BIE Zhaohong, et al. Review of energy Internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4318–4328, 4632 [54] 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国电机工程学报, 2017, 37(22): 6445–6462, 6757 BIE Zhaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy Internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445–6462, 6757 [55] HAN D R, DING Y Y, SHI Z Y, et al. The impact of digital economy on total factor carbon productivity: the threshold effect of technology accumulation[J]. Environmental Science and Pollution Research, 2022, 29(37): 55691–55706. [56] 国家市场监督管理总局, 国家标准化管理委员会. 标准文献元数据: GB/T 2373—2021[S]. 北京: 国家市场监督管理总局, 国家标准化管理委员会, 2021. [57] SPADARO G, TIDDI I, COLUMBUS S, et al. The cooperation databank: machine-readable science accelerates research synthesis[J]. Perspectives on Psychological Science:a Journal of the Association for Psychological Science, 2022, 17(5): 1472–1489. [58] BOSTOCK M, OGIEVETSKY V, HEER J. D3 data-driven documents[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2301–2309. [59] BEKUN F V, ADEDOYIN F F, LORENTE D B, et al. Designing policy framework for sustainable development in next-5 largest economies amidst energy consumption and key macroeconomic indicators[J]. Environmental Science and Pollution Research, 2022, 29(11): 16653–16666. [60] MAJEED BUTT O, ZULQARNAIN M, MAJEED BUTT T. Recent advancement in smart grid technology: future prospects in the electrical power network[J]. Ain Shams Engineering Journal, 2021, 12(1): 687–695. [61] 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905–7924 ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23): 7905–7924 [62] 韩笑, 郭剑波, 蒲天骄, 等. 电力人工智能技术理论基础与发展展望(一): 假设分析与应用范式[J]. 中国电机工程学报, 2023, 43(8): 2877–2891 HAN Xiao, GUO Jianbo, PU Tianjiao, et al. Theoretical foundation and directions of electric power artificial intelligence(Ⅰ): hypothesis analysis and application paradigm[J]. Proceedings of the CSEE, 2023, 43(8): 2877–2891 [63] 袁健. 无人机在高压输电线路巡检中的应用[J]. 电子技术, 2022, 51(6): 154–155 YUAN Jian. Application of UAV in high voltage transmission line inspection[J]. Electronic Technology, 2022, 51(6): 154–155 [64] 徐其春, 郭晨晨, 刘志明, 等. 无人机线路自主巡检的动态轨迹规划方法[J]. 电力系统及其自动化学报, 2022, 34(10): 24–31 XU Qichun, GUO Chenchen, LIU Zhiming, et al. Drone autonomous inspection method for transmission line based on dynamic trajectory planning[J]. Proceedings of the CSU-EPSA, 2022, 34(10): 24–31 [65] 邓芳明, 单运, 解忠鑫, 等. 基于博弈论和强化学习的无人机电力巡检卸载策略[J]. 电网技术, 2021, 45(9): 3649–3657 DENG Fangming, SHAN Yun, XIE Zhongxin, et al. Power inspection and unloading strategy of UAV based on game theory and reinforcement learning[J]. Power System Technology, 2021, 45(9): 3649–3657 [66] 陈广, 宋述贵, 杨凯. 电力行业物资供应链管理标准化体系研究[J]. 中国标准化, 2021(17): 86–90 CHEN Guang, SONG Shugui, YANG Kai. Research on the standards system of material supply chain in the power industry[J]. China Standardization, 2021(17): 86–90 [67] 武群丽, 席曼. 基于电力供应链博弈的可再生能源政策效应研究[J]. 中国电力, 2022, 55(5): 12–20, 38 WU Qunli, XI Man. Research on effects of renewable energy policy based on power supply chain game[J]. Electric Power, 2022, 55(5): 12–20, 38 [68] 杨砚砚, 王延海. 电力物资供应链运营体系建设实践[J]. 供应链管理, 2021, 2(5): 86–91 YANG Yanyan, WANG Yanhai. The construction practice of electric material supply chain operation system[J]. Supply Chain Management, 2021, 2(5): 86–91 [69] 袁劲松, 李晓军. 电力企业中的供应链管理应用浅析[J]. 技术与市场, 2023, 30(1): 176–178 [70] 王国政, 郭剑波, 马士聪, 等. 电力系统增强智能分析初探[J]. 中国电机工程学报, 2020, 40(16): 5079–5088 WANG Guozheng, GUO Jianbo, MA Shicong, et al. Preliminary study of power system enhanced intelligence analysis[J]. Proceedings of the CSEE, 2020, 40(16): 5079–5088 [71] 赵鹏, 蒲天骄, 王新迎, 等. 面向能源互联网数字孪生的电力物联网关键技术及展望[J]. 中国电机工程学报, 2022, 42(2): 447–458 ZHAO Peng, PU Tianjiao, WANG Xinying, et al. Key technologies and perspectives of power Internet of Things facing with digital twins of the energy Internet[J]. Proceedings of the CSEE, 2022, 42(2): 447–458 [72] COCKBURN I M, HENDERSON R, STERN S. The impact of artificial intelligence on innovation: an exploratory analysis[M]//The Economics of Artificial Intelligence: an Agenda. University of Chicago Press, 2018: 115–146. [73] 单葆国, 冀星沛, 姚力, 等. 能源高质量发展下中国电力供需格局演变趋势[J]. 中国电力, 2021, 54(11): 1–9, 18 SHAN Baoguo, JI Xingpei, YAO Li, et al. Evolving tendency of electric supply and demand pattern under the circumstances of high-quality energy development[J]. Electric Power, 2021, 54(11): 1–9, 18 [74] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China’s power system[J]. Electric Power, 2021, 54(3): 1–11 [75] 蒲天骄, 张中浩, 谈元鹏, 等. 电力人工智能技术理论基础与发展展望(二): 自主学习与应用初探[J]. 中国电机工程学报, 2023, 43(10): 3705–3718 PU Tianjiao, ZHANG Zhonghao, TAN Yuanpeng, et al. Theoretical primer and directions of electric power artificial intelligence(Ⅱ): self-directed learning and preliminary application[J]. Proceedings of the CSEE, 2023, 43(10): 3705–3718 [76] 林峰, 肖立华, 商浩亮, 等. “双碳”背景下能源互联网数字孪生系统的设计及应用[J]. 电力科学与技术学报, 2022, 37(1): 29–34 LIN Feng, XIAO Lihua, SHANG Haoliang, et al. Design and application of energy Internet digital twin system under the background of “dual carbon”[J]. Journal of Electric Power Science and Technology, 2022, 37(1): 29–34 [77] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(增刊1): 28–51 HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28–51 [78] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245–6259 LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245–6259 [79] 刘育权, 宋禹飞, 梁锦照, 等. 电力设备数字化标准一体化支撑智能制造[J]. 南方电网技术, 2022, 16(12): 46–53 LIU Yuquan, SONG Yufei, LIANG Jinzhao, et al. Digital standardization integration on power equipment for intelligent manufacturing[J]. Southern Power System Technology, 2022, 16(12): 46–53 [80] 刘林, 祁兵, 李彬, 等. 面向电力物联网新业务的电力通信网需求及发展趋势[J]. 电网技术, 2020, 44(8): 3114–3130 LIU Lin, QI Bing, LI Bin, et al. Requirements and developing trends of electric power communication network for new services in electric Internet of Things[J]. Power System Technology, 2020, 44(8): 3114–3130 [81] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171–191 ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171–191 [82] 朱晔, 任洛卿, 周德群, 等. 新型电力系统与综合能源服务的关系及未来发展建议[J]. 中国软科学, 2022(11): 20–25 ZHU Ye, REN Luoqing, ZHOU Dequn, et al. Relationship between new power system and integrated energy services and suggestions for its future development[J]. China Soft Science, 2022(11): 20–25 [83] 张英杰. 构建以新能源为主体的新型电力系统的发展路径研究[J]. 电工技术, 2022(18): 172–174, 178 ZHANG Yingjie. Research on the development path of building a new electric power system based on new energy sources[J]. Electric Engineering, 2022(18): 172–174, 178 [84] 韩学山, 李克强. 适应新型电力系统发展的协同调度理论研究[J]. 山东大学学报(工学版), 2022, 52(5): 14–23 HAN Xueshan, LI Keqiang. Theoretical study on synergistic dispatch for development of new power system[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 14–23 [85] 封红丽. 新型电力系统建设下电力多元化服务发展机遇分析[J]. 能源, 2022(9): 36–40 [86] 彭在兴, 王颂, 陈佳莉, 等. 基于数字孪生的数字电力设备思考与展望[J]. 南方电网技术, 2022, 16(12): 9–15 PENG Zaixing, WANG Song, CHEN Jiali, et al. Thinking and prospect of digital power equipment based on digital twin[J]. Southern Power System Technology, 2022, 16(12): 9–15 [87] 林伯强, 杨梦琦. 碳中和背景下中国电力系统研究现状、挑战与发展方向[J]. 西安交通大学学报(社会科学版), 2022, 42(5): 1–10 LIN Boqiang, YANG Mengqi. China’s power system research in the context of carbon neutrality: current status, challenges, and development direction[J]. Journal of Xi’an Jiaotong University (Social Sciences), 2022, 42(5): 1–10 |
[1] | 贺馨仪, 董明, 孙歆, 颜拥, 姚影. 标准数字化应用框架设计及其设备侧领域实践[J]. 中国电力, 2024, 57(11): 78-87. |
[2] | 戴璐平, 瞿青, 黄露, 潘晔. 基于配网新形态下电费风险模型构建与应用[J]. 中国电力, 2021, 54(8): 98-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||