中国电力 ›› 2023, Vol. 56 ›› Issue (8): 207-215.DOI: 10.11930/j.issn.1004-9649.202212075

• 信息与通信 • 上一篇    下一篇

智能变电站多信息融合建模的通信链路故障定位方法

皮志勇1, 朱益2, 廖玄1, 李振兴2, 方豪2, 吴沛1   

  1. 1. 国网湖北省电力有限公司荆门供电公司, 湖北 荆门 448000;
    2. 三峡大学 电气与新能源学院, 湖北 宜昌 443002
  • 收稿日期:2022-12-21 修回日期:2023-07-07 发布日期:2023-08-28
  • 作者简介:皮志勇(1975—),男,硕士,高级工程师,从事电力系统分析与控制研究,E-mail:466516195@qq.com;朱益(1999—),男,通信作者,硕士研究生,从事电力系统继电保护研究,E-mail:zhuyidianqi@163.com
  • 基金资助:
    国家自然科学基金资助项目(大规模电力外送通道重合闸所致重大风险分析与规避控制策略研究,52077120)。

Fault Location Method for Communication Link with Multi-information Fusion Modeling of Smart Substation

PI Zhiyong1, ZHU Yi2, LIAO Xuan1, LI Zhenxing2, FANG Hao2, WU Pei1   

  1. 1. State Grid Hubei Jingmen Electric Power Supply Company, Jingmen 448000, China;
    2. College of Electrical Engineering and New Energy, Three Gorges University, Yichang 443002, China
  • Received:2022-12-21 Revised:2023-07-07 Published:2023-08-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Major Risk Analysis and Control Strategy by Reclosing for Large-Scale Power Transmission Channel, No.52077120).

摘要: 为解决智能变电站通信链路故障所致告警信息繁多、运维效率低下的问题,提出一种智能变电站多信息融合建模的通信链路故障定位方法。首先,基于全站配置描述(substation configuration description,SCD)文件遍历网络节点,构建通信网络编号原则;融合多告警信息,构建节点、链路编码规则,形成节点-链路映射关系并建立定位模型;采用自适应遗传粒子群算法求解定位模型,实现故障链路精准定位。以某220 kV智能变电站二次网络为例,验证了所提方法在不同链路故障场景下的有效性。

关键词: 智能变电站, 链路故障定位, 告警信息, 期望映射, 自适应遗传粒子群算法

Abstract: In order to solve such problems of smart substations as numerous alarm information caused by communication link failure and poor operation efficiency, a fault location method for communication link is proposed with multi-information fusion modeling of smart substation. Firstly, a communication network numbering principle is proposed by traversing the device nodes of SCD. Secondly, by fusing multiple alarm information, the node and link coding rules are formulated, and the node-link mapping relationship and positioning model are established. And then, the adaptive genetic particle swarm algorithm is used to solve the positioning model to achieve accurate positioning of link faults. Finally, taking the secondary network of a 220 kV smart substation as an example, the effectiveness of the proposed method is verified under different link failure scenarios.

Key words: smart substation, link fault location, alarm information, expected mapping, adaptive genetic particle swarm optimization