[1] HUANG Q, SONG Y Q, SUN X, et al. Magnetics in smart grid[J]. IEEE Transactions on Magnetics, 2014, 50(7): 1–7. [2] WANG H F, ZHOU B, ZHANG X. Research on the remote maintenance system architecture for the rapid development of smart substation in China[J]. IEEE Transactions on Power Delivery, 2018, 33(4): 1845–1852. [3] HUANG Q, JING S, LI J, et al. Smart substation: state of the art and future development[J]. IEEE Transactions on Power Delivery, 2017, 32(2): 1098–1105. [4] XIAO F, ZHANG Z, YIN X G. Reliability evaluation of the centralized substation protection system in smart substation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(3): 317–327. [5] 许尧, 马欢, 许旵鹏, 等. 智能变电站继电保护智能运维系统自动配置技术研究[J]. 电力系统保护与控制, 2022, 50(11): 160–168 XU Yao, MA Huan, XU Chanpeng, et al. Self-configuration technology of an intelligent operation and maintenance system of intelligent substation relay protection[J]. Power System Protection and Control, 2022, 50(11): 160–168 [6] 张友强, 王洪彬, 刁兴华, 等. 计及保护失效的智能变电站二次系统综合风险评估研究[J]. 电力系统保护与控制, 2018, 46(22): 155–163 ZHANG Youqiang, WANG Hongbin, DIAO Xinghua, et al. Integrated risk assessment of intelligent substation secondary system considering the protection failure[J]. Power System Protection and Control, 2018, 46(22): 155–163 [7] 张宸滔, 郑永康, 卢继平, 等. 基于图神经网络的智能变电站二次回路故障定位研究[J]. 电力系统保护与控制, 2022, 50(11): 81–90 ZHANG Chentao, ZHENG Yongkang, LU Jiping, et al. Fault location of secondary circuits in a smart substation based on a graph neural network[J]. Power System Protection and Control, 2022, 50(11): 81–90 [8] 任博, 郑永康, 王永福, 等. 基于深度学习的智能变电站二次设备故障定位研究[J]. 电网技术, 2021, 45(2): 713–721 REN Bo, ZHENG Yongkang, WANG Yongfu, et al. Fault location of secondary equipment in smart substation based on deep learning[J]. Power System Technology, 2021, 45(2): 713–721 [9] 孙宇嫣, 蔡泽祥, 郭采珊, 等. 基于深度学习的智能变电站通信网络故障诊断与定位方法[J]. 电网技术, 2019, 43(12): 4306–4313 SUN Yuyan, CAI Zexiang, GUO Caishan, et al. Fault diagnosis and positioning for communication network in intelligent substation based on deep learning[J]. Power System Technology, 2019, 43(12): 4306–4313 [10] 林凌云, 陈青, 金磊, 等. 基于知识图谱的变电站告警信息故障知识表示研究与应用[J]. 电力系统保护与控制, 2022, 50(12): 90–99 LIN Lingyun, CHEN Qing, JIN Lei, et al. Research and application of substation alarm signal fault knowledge representation based on knowledge graph[J]. Power System Protection and Control, 2022, 50(12): 90–99 [11] 张延旭, 蔡泽祥, 龙翩翩, 等. 智能变电站通信网络实时故障诊断模型与方法[J]. 电网技术, 2016, 40(6): 1856–1862 ZHANG Yanxu, CAI Zexiang, LONG Pianpian, et al. Real-time fault diagnosing models and method for communication network in smart substation[J]. Power System Technology, 2016, 40(6): 1856–1862 [12] DONG X Z, WANG D L, ZHAO M Y, et al. Smart power substation development in China[J]. CSEE Journal of Power and Energy Systems, 2016, 2(4): 1–5. [13] WANG J, WANG Z K. Research and implementation of virtual circuit test tool for smart substations[J]. Procedia Computer Science, 2021, 183: 197–204. [14] 杨凯, 余高旺, 宋勇辉, 等. 智能变电站冗余数据处理方案的研究与应用[J]. 电力系统保护与控制, 2015, 43(12): 150–154 YANG Kai, YU Gaowang, SONG Yonghui, et al. Research and application of redundant data processing scheme for smart substation[J]. Power System Protection and Control, 2015, 43(12): 150–154 [15] 毛南平, 李丰伟, 龚向阳. 地区电网智能变电站二次典型异常调控处理方案[M]. 北京: 中国电力出版社, 2015. [16] 朱林, 王鹏远, 石东源. 智能变电站通信网络状态监测信息模型及配置描述[J]. 电力系统自动化, 2013, 37(11): 87–92 ZHU Lin, WANG Pengyuan, SHI Dongyuan. Status monitoring information model and configuration description of communication network in smart substations[J]. Automation of Electric Power Systems, 2013, 37(11): 87–92 [17] 屈星, 李欣然, 宋军英, 等. 遗传算子自适应设计及其在负荷建模中的应用[J]. 电力系统及其自动化学报, 2018, 30(7): 65–72 QU Xing, LI Xinran, SONG Junying, et al. Adaptive design of genetic operators and its application to power load modeling[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 65–72 [18] CHEN R, LIANG C Y, HONG W C, et al. Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm[J]. Applied Soft Computing, 2015, 26: 435–443. [19] HAJIAN M, RANJBAR A M, AMRAEE T, et al. Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(1): 28–34. [20] 金涛, 李鸿南, 刘对. 基于BPSOGA的含风电机组的配电线路故障区段定位[J]. 电力自动化设备, 2016, 36(6): 27–33 JIN Tao, LI Hongnan, LIU Dui. Faulty section location based on BPSOGA for distribution line with wind turbine generator[J]. Electric Power Automation Equipment, 2016, 36(6): 27–33 [21] HU M Q, WU T, WEIR J D. An adaptive particle swarm optimization with multiple adaptive methods[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5): 705–720. [22] KUTTOMPARAMBIL ABDULKHADER H, JACOB J, MATHEW A T. Fractional-order lead-lag compensator-based multi-band power system stabiliser design using a hybrid dynamic GA-PSO algorithm[J]. IET Generation, Transmission & Distribution, 2018, 12(13): 3248–3260. [23] KAN X, FAN Y X, FANG Z J, et al. A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network[J]. Information Sciences, 2021, 568: 147–162. [24] MOSLEHI F, HAERI A. An evolutionary computation-based approach for feature selection[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(9): 3757–3769. [25] 潘瑞媛, 唐忠, 史晨豪, 等. 基于主从博弈的多主体投资多微网系统优化配置[J]. 中国电力, 2022, 55(6): 65–73+127 PAN Ruiyuan, TANG Zhong, SHI Chenhao, et al. Optimal configuration of multi-microgrid system with multi-agent joint investment based on stackelberg game[J]. Electric Power, 2022, 55(6): 65–73+127 [26] 姜凤利, 张鑫, 王俊, 等. 多负荷水平下含风电接入的配电网无功优化[J]. 中国电力, 2017, 50(3): 137–142 JIANG Fengli, ZHANG Xin, WANG Jun, et al. Reactive power optimization of distribution system integrated with wind power under multiple load levels[J]. Electric Power, 2017, 50(3): 137–142
|